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Flow around a Cylinder in a scoured Channel Bed 

Abstract 

The flow pattern around a cylinder protruding vertically on a scoured channel bed was 

experimentally and numerically investigated. Flow in an equilibrium scour hole (the 

scouring has ceased) under a clear water regime (no sediment supply into the scour hole) 

was considered. 

Detailed measurements were obtained with a non-intrusive instrument, the Acoustic 

Doppler Velocity Profiler (ADVP), which measures the profiles of the 3D instantaneous 

velocity vectors. The measurements were done in different vertical planes positioned 

around the cylinder. From the measured data, the spatial distributions of the mean (time-

averaged) velocities and its turbulence components could be deduced. 

The numerical simulations of the flow were performed by using a 3D model, which is 

developed based on the approximate solution of the time-averaged equations of motion 

and of continuity for incompressible flows by using a finite-volume method. The model 

uses the k- turbulence closure model to compute the turbulence stresses and the Semi-

Implicit Method for Pressure-Linked Equation (SIMPLE) method to link the velocity to 

the pressure. The discretisation of the equations were done following the hybrid and 

power-law schemes on a structured, collocated, hexahedral, body-fitted grid. While the 

essentials of the model are relatively standard, some detailed derivations and 

clarifications were elucidated about the boundary conditions and the pressure-velocity 

coupling. 

The measured velocity data show that a three-dimensional flow establishes itself, which 

is characterized by a rotating flow inside the scour hole upstream of the cylinder formed 

by a strong downward flow along the cylinder face and a reversed flow along the scour 

bed. This structure, which is known as horseshoe vortex, disappears behind the cylinder 

where a flow reversal towards the water surface is observed immediately behind the 

cylinder. These observations are supported by the numerical simulation. 

The measured turbulence intensities show a considerable increase inside the scour hole 

and in regions close to the cylinder. The turbulent kinetic energy increases on entering 

the scour hole, on approaching the cylinder, and on moving towards downstream regions. 

The profiles of the turbulent kinetic energy are characterized by bulges below the original 

bed level. Similar observations can be made for the Reynolds stresses. 

The numerical simulation under-predicted the turbulent kinetic energy, notably in the 

wake region immediately behind the cylinder. It appears that this problem is related to the 
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computation of the turbulent kinetic-energy generation at the solid boundaries. This 

problem was identified and discussed. 

Estimates on the bed shear-stresses along the plane of symmetry, based on the measured 

velocity and Reynolds stress, disclose a diminishing value upon entering the scour hole 

and upon approaching the cylinder. Negative values are observed in the upstream scour 

bed, which is in accordance with the reversed flow in that region. Moving downstream 

and leaving the scour hole, the bed shear-stresses recover towards their value in the 

approach flow. Values obtained from the numerical simulation show a similar trend, 

having a satisfactory agreement with the ones obtained from the measurements. 

The computation of the water surface profile produced results that are in agreement with 

the measured one, with the exception for those along the side circumference of the 

cylinder. The discrepancy in this region is apparently due to the inaccuracy of the 

computation in regions of a strong pressure gradient, such as the case along the cylinder 

circumference. Another method of positioning the water surface, employing kinematic 

boundary conditions, was proposed and discussed. 
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Écoulement à Surface Libre autour d’un Cylindre 

dans une Fosse d’Érosion Locale 

Résumé 

L’écoulement autour d’un cylindre dans une fosse d’érosion a été étudié en effectuant des 

mesures dans un modèle réduit et des simulations numériques avec un modèle 

hydrodynamique tridimensionnel. Les mesures et les simulations se limitent à un 

écoulement avec une profondeur de fosse qui est en équilibre (il n’y a plus d’érosion) et 

sans transport solide. 

Le travail expérimental s’effectue principalement par des mesures de vitesses 

d’écoulement. Un Profileur Vélocimétrique Acoustique Doppler (PVAD) a été utilisé ; ce 

dispositif très puissant est capable de mesurer les vecteurs de vitesse instantanés en 

plusieurs points de mesures. À partir de ces mesures, les profils des vitesses (moyennées 

sur les temps), des intensités de turbulence et des tensions de Reynolds sont obtenus. La 

plupart des mesures a été faite sur des plans verticaux autour du cylindre.

Pour faciliter le travail numérique, un modèle hydrodynamique tridimensionnel a été 

développé. Ce modèle est basé sur la représentation en volumes finis des équations de 

Reynolds. Il emploie un maillage structuré dont les variables primitives sont définies au 

centre des volumes de contrôle. Les flux convectif et diffusif sont calculés par deux 

méthodes (hybride et loi de puissance) avec des corrections des termes non orthogonaux. 

La méthode SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) établit le 

couplage de la pression avec la vitesse ; elle permet le calcul du champ de pression. La 

viscosité turbulente est calculée à l’aide du modèle k-. Le modèle est relativement 

standard ; néanmoins, quelques dérivations et clarifications ont été abordées sur les 

conditions aux bords et le calcul de pression. 

Les données des vitesses mesurées montrent que l’écoulement dans le plan de symétrie 

amont s’organise dans un tourbillon créé par l’arrêt de l’écoulement arrivant au cylindre. 

La pression due à l’arrêt d’écoulement augmente et, par conséquent, conduit 

l’écoulement vers le bas près du cylindre avec une vitesse croissante ; près du fond, 

l’écoulement se dirige vers l’amont. Ce tourbillon est le départ de ce qui est appelé le 

vortex de fer-à-cheval. Il se propage vers l’aval et son intensité devient faible voire 

presque invisible. Derrière le cylindre, un autre courant de retour est observé alors que 

celui prés de la surface se dirige vers le cylindre. Ces phénomènes ont été également 

vérifiés par les résultats de la simulation numérique. 

Les intensités de turbulence s’accroissent vers, en entrant la fosse, en approchant le 

cylindre et en allant vers l’aval. Les intensités de turbulence sont caractérisés par des pics 
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qui se trouvent au dessous de la ligne du fond original. La même tendance a été observée 

sur les profils des tensions de Reynolds. 

L’énergie cinétique turbulente obtenue par la simulation numérique a pu être comparée 

avec les mesures. Le modèle a sous-estimé les valeurs mesurées. Il paraît que ce 

problème provient de la difficulté du calcul de la génération d’énergie cinétique 

turbulente près du bord solide. Ce problème a été identifié et discuté en détail. 

Les mesures de vitesse et de tensions de Reynolds près du fond permettent d’estimer la 

force de frottement au fond de la fosse ; celle ci a été faite aux plans de symétrie amont et 

aval. Elle montre que la force de frottement décroît en entrant dans la fosse et en 

s’approchant du cylindre. Des valeurs négatives sont obtenues au plan amont où le 

courant de retour est observé. Derrière le cylindre, la force de frottement décroît en 

sortant de la fosse. La même tendance a été démontrée par les résultats de la simulation 

numérique. 

Le profil de la surface d’eau en amont du cylindre concorde avec les mesures. Vers les 

plans aval, le résultat de la simulation est moins satisfaisant ; le modèle a sous-estimé la 

profondeur de l’eau dans le plan normal de l’écoulement. Ce problème pourrait être dû à 

l’imprécision de la méthode de calcul aux endroits ayant un gradient de pression forte. 

Une proposition d’amélioration du calcul de la surface libre, en utilisant la condition 

cinématique, a été élaborée. 
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1 Introduction 

1.1 Flow around a cylinder 

Local scour around a pier is a result of the interaction amongst the pier, the approach 

flow and the erodible bed. The presence of a pier results in a stagnation pressure build-up 

in front of the pier and a three-dimensional turbulent flow —characterized by the 

downward flow ahead of the pier and the so-called horseshoe vortex along the base of the 

pier— forms itself. The flow modifies the erodible bed in the vicinity of the pier when 

local scour takes place. It has been generally agreed upon that this scour is initiated by 

the downward flow and further provoked by the horseshoe vortex. The scour process can 

be either a clear-water one when there is no general sediment transport, or a live-bed one 

when a sediment transport takes place along the channel. Local scour is a complex 

phenomenon due to the interplay among various parameters, namely the fluid, the flow, 

the time, the bed material, and the pier. Two particular interests in the study of local 

scour around a pier are the development of the equilibrium scour hole as a function of 

those parameters and the alteration of the flow field around the pier. This second aspect 

has been selected as the object in the present work. The flow field around a cylindrical 

pier is studied numerically and experimentally, in which a clear-water flow in an 

equilibrium (maximum) scour-depth is considered. This work is a continuation and an 

extension of the previous study conducted at the Laboratoire de recherches hydrauliques 

(LRH) of EPFL (Yulistiyanto, 1997). 

In the work previously conducted at LRH, extensive velocity data of flow around a 

cylinder on a flat channel bed were reported (Yulistiyanto, 1997; Graf and Yulistiyanto, 

1998). The three-dimensional instantaneous velocities are measured by using an Acoustic 

Doppler Velocity Profiler (ADVP) conceived and developed at LRH (Lhermitte and 

Lemmin, 1994). The data are presented as the vertical distributions of velocities, 

Reynolds stresses, and turbulence intensities in different vertical planes around the 

cylinder. It is reported that the horseshoe vortex manifests itself, which depends largely 

on the approaching flow; it has the strongest rotation at the plane of symmetry upstream 

of the cylinder. Its strength weakens as it travels downstream along the perimeter of the 

cylinder. Their measurements show that, as the flow passes the cylinder from upstream 

up to the side of the cylinder, the turbulent kinetic energy decreases, but further 

downstream the turbulent kinetic energy increases. Upstream of the cylinder, the 

maximum energy is concentrated at the bottom corner of the cylinder. This region of 

maximum energy at the other planes shifts away from the bed and from the cylinder. In 

addition to the laboratory measurements, a numerical simulation of the flow is also 

reported (Yulistiyanto, 1997; Yulistiyanto et al., 1998). The depth-averaged velocity field 
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was computed by using a numerical model which takes into account the dispersion 

stresses, evaluated from the velocity distributions along the curved streamlines. The 

simulation compares favorably with the measurements. 

In the light of the previous study results, the work is continued and extended in the 

present investigation to embody a scour hole around the cylinder. A similar path is 

followed, i.e. by performing numerical flow simulations and by conducting velocity 

measurements. The first is aimed at obtaining the general pattern of the velocity alteration 

by the cylinder while the second is directed at getting detail pictures of the velocity and 

its turbulence structure around the cylinder. 

The depth-averaged numerical simulation approach used in the preceding study is not 

suitable for the present case since the three-dimensional features of the geometry, i.e. the 

scour hole, and the flow are significant. A three-dimensional numerical model is thus 

opted. The model is developed based on the approximate solution of the time-averaged 

equations of motion and continuity for incompressible flows by using finite-volume 

method. The closure model is achieved by using the k- model (Launder and Spalding, 

1974). Non-orthogonal hexahedral cell-centered grid arrangements are used and all 

variables are defined in the Cartesian coordinate system. The classical hybrid and power-

law schemes (Patankar, 1980) are applied to discretise the convective-diffusive fluxes, 

combined with the so-called Semi-Implicit Method for Pressure-Linked Equation 

(SIMPLE) method to compute the pressure (Patankar and Spalding, 1972). 

The ADVP, as in the preceding study, is used to measure the three-dimensional 

instantaneous velocity. The measurements are conducted in the equilibrium (maximum) 

scour-depth condition which is established under a clear-water scour regime. Vertical 

distributions of the three-dimensional instantaneous velocities are measured at radial 

planes around the cylinder, from which the vertical distributions of the (time-averaged) 

velocities, the turbulence intensities, and the Reynolds stresses are deduced. 

A number of works on local scour around cylindrical piers, both numerical simulations 

and experiments, have been reported. Herein a brief summary of those previous works is 

presented. 

Most of the experimental works on flow around a cylinder so far concern with the 

development of the scour depth. Few work have focused on the flow field (see for 

example Hjorth, 1975; Melville, 1975; Dargahi, 1987; Dey et al., 1995; Ahmed and 

Rajaratnam, 1998; Graf and Yulistiyanto, 1998). Melville (1975) was the first who 

conducted velocity measurements around a cylinder in the scour hole. He measured the 

flow velocity and its turbulent structure near the bottom and inside the scour hole by 

using hot-film anemometer and pitot tube. From the measurements, he was able to 

describe the horseshoe vortex as it travels along the perimeter of the cylinder; the strength 

of the horseshoe vortex was evaluated. Hjorth (1975) and Dargahi (1987) did a thorough 

investigation by measurements, but concern mostly the flat channel-bed case. Dey et al. 

(1995) proposed an analytical flow model to analyze the mean flow velocity in the scour 

hole based on the velocity data obtained from measurements using a 5-yaw and a 3-yaw 
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pitot tubes. Ahmed and Rajaratnam (1998) attempted to describe the velocity profiles in 

the upstream plane of symmetry by using a Clauser-type defect scheme. It was also 

reported that, rather than separating from the bed, the approach flow accelerates on 

entering the scour hole; a downward velocity up to 95% of the approach velocity was 

reported. 

Simulations of three-dimensional flow around a cylinder have been reported (see for 

example Ali et al., 1997, Olsen and Kjellesvig, 1998). Up to recently, however, there has 

not been any comparison of the results to detailed measurements. This is mostly due to 

the fact that such data are not always available to modelers. A comparison of the 

computed and measured flow, not only the time-averaged velocities but also the 

turbulence, would help to define clearly the limitations of a mathematical modeling 

approach and, in a broader perspective, to evidence the need for further developments or 

refinements of the computational techniques. In this aspect, therefore, the contribution of 

the present work shall be considered. 

1.2 Objective and scope of the work 

The objective of the present work is focused on the obtaining of better understanding to 

the flow and turbulence structures around the cylinder as they are altered by the cylinder 

and the scour hole. The investigation is limited to the flow in an equilibrium scour-depth 

under a clear-water scour regime. The work is implemented through laboratory 

experiments by conducting detailed measurements on the three-dimensional velocity and 

through numerical modeling by performing three-dimensional flow simulations. 

The detailed measurements of the vertical distributions of the three-dimensional 

instantaneous velocities are conducted in vertical planes around the cylinder by using 

ADVP, a non-intrusive acoustic velocity profiler (see Chapter 2). From those 

measurements the distributions of the (time-averaged) velocities, of the vorticities, of the 

turbulence intensities, and of the Reynolds stresses can be constructed and investigated 

(see Chapter 3). The velocity measurements are performed only for a single run with a 

given set of flow parameters and one cylinder diameter. Four observations of scour depth 

developments under different flow conditions and cylinder diameters, nevertheless, are 

conducted. 

The numerical simulations are performed by using a three-dimensional model developed 

in the present work (see Chapter 4). The model is based on the approximate solution of 

the time-averaged equations of motion and continuity for incompressible flows by using 

finite-volume method. The model uses the k- turbulence closure model to compute the 

turbulence stresses and the SIMPLE method to link the velocity to the pressure. The 

water surface boundary is determined according to the pressure along the surface 

boundary. The model, even though solves the transient flow equations, is applicable only 

for steady flow problems. The model is tested to simulate a simple uniform flow to verify 

its basic performance. The tested model is then applied to simulate flow around a 

cylinder. Two cases of flow around a cylinder are considered, namely flat channel bed 



– 1.4 – 

and scoured channel bed (see Chapter 5). The simulation results for the flat channel bed 

case are compared to the Yulistiyanto’s measurements (Yulistiyanto, 1997). The results of 

the scoured channel bed case are compared to the present measurements.
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2 Flow Measurements 

Abstract 

Measured three-dimensional flow fields around a vertical cylinder, in an established 

(equilibrium) scour hole under a clear-water regime, are reported. An acoustic Doppler 

velocity profiler (ADVP) was used to measure instantaneously the vertical distributions 

of the three velocity components in vertical planes around the cylinder. The flow field is 

presented as the vertical distributions of the (time averaged) velocities, of the turbulence 

intensities, and of the Reynolds stresses in the planes  = 0°, 45°, 90°, 135° and 180°. 

The flow in plane of symmetry upstream of the cylinder,  = 0°, is characterized by a 

reversed flow along the scour bed and a strong downward flow close to the cylinder. This 

structure remains, but with diminishing strength, in the other planes,  = 45°, 90°, and 

135°. In these three planes, the downward flow has a decreasing magnitude. In the plane 

 = 180°, there is a flow reversal close to the surface. As the flow moves downstream, 

leaving the scour hole, the flow reversal diminishes; the flow is recovering to the 

approach flow condition. Measurements in all planes show that the flow in the far region, 

outside the scour hole, does not change with the presence of the cylinder. The flow is 

altered only in the scour-hole region. 

The turbulence intensities get stronger in the downstream planes. The increase is notably 

important from the plane  = 90° to  = 135° and further downstream to  = 180°. 

Approaching the cylinder, in all planes except in the plane  = 180°, the turbulence 

intensifies within the scour hole, z < 0, but remains more or less unchanged outside the 

scour hole, z > 0. Downstream of the cylinder, in the plane  = 180°, the turbulence gets 

its strongest intensities. It is interesting that the three components of the intensity, u u , 

v v , and w w , in the plane  = 180° indicate a tendency of being isotropic.

The vertical distributions of the Reynolds stresses in the planes  = 0° to 135° have an 

almost linear distribution in the upper layer, z > 0, while in the lower layer, they exhibit a 

strong peak. From the plane  = 0° to  = 135°, the Reynolds stresses inside the scour 

hole get increasingly stronger. In all planes, the  u w  is always dominant compared to 

the  v w . Downstream of the cylinder in the plane  = 180°, however, the vertical 

distributions of the Reynolds stresses do not show any conclusive trend. 

Presented also are the vertical distributions of the uniform approach flow, i.e. the flow 

without the cylinder being installed. The approach flow is uniform, but shows a slight 

tendency of being decelerated; the bed is hydraulically (incomplete) rough. 
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Résumé 

Le champ des vitesse mesuré autour d’un cylindre dans un affouillement est présenté. Un 

profileur vélocimétrique acoustique Doppler est utilisé pour effectuer les mesures ; ce 

dispositif mesure les trois composantes de vitesse instantanée en plusieurs points de 

mesure au long d’un vertical. A partir de ces mesures, les profils des vitesses 

(moyennées), des turbulences et des tensions de Reynolds sont obtenues. 

Les données des vitesses mesurées montrent que l’écoulement dans le plan de symétrie 

amont s’organise dans un tourbillon créé par l’arrêt de l’écoulement arrivant au cylindre. 

La pression due à l’arrêt d’écoulement augmente et, par conséquent, conduit 

l’écoulement vers le bas près du cylindre avec une vitesse croissante (un maximum de 

0.6U∞) ; près du fond, l’écoulement se dirige vers l’amont. Ce tourbillon est le départ de 

ce qui est appelé le vortex de fer-à-cheval. Il se propage vers l’aval et son intensité 

devient faible voire presque invisible. Derrière le cylindre, un autre courant de retour est 

observé alors que celui prés de la surface se dirige vers le cylindre. 

Les intensités de turbulence s’accroissent vers les plans aval. Cette augmentation est plus 

significative au plan  = 90° au  = 135°, et également au plan  = 180°. Les turbulences 

dans la fosse, d’après les mesures sur tous les plans, s’intensifient quand l’écoulement 

s’approche du cylindre. Les intensités de turbulence sont au maximum au plan  = 180°. 

Il est intéressant de noter que dans ce plan la turbulence ait une tendance à être 

isotropique. Les profils de l’énergie cinétique turbulente sont caractérisés par des pics qui 

se trouvent à la ligne de séparation. 

Les profils des tensions de Reynolds,  u w  et  v w , sont à peu près linéaires dans la 

partie supérieure, z > 0, alors que dans la fosse, z < 0, ils montrent une forte croissante 

vers le maximum. Du plan  = 0° aux plans  = 45°, 90° et 135°, les tensions de 

Reynolds dans la fosse augmentent. Dans tous les plans, la composante  u w  est 

toujours supérieure par rapport au  v w . Derrière le cylindre, la répartition des tensions 

de Reynolds ne donne pas de tendance concluante. 

Des mesures ont été aussi effectuées dans l’écoulement à fond plat sans cylindre ; celles-

ci représentent les conditions d’approche. Les profils mesurés indiquent que l’écoulement 

d’approche est uniforme et a une tendance à décélérer et hydrauliquement en transition-

rugueux.
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2.1 Measurement design 

The flow measurement is aimed at collecting detailed data of the three-dimensional 

velocity fields around the cylinder, from which a close investigation can be made to 

characterize the alteration of the flow around the cylinder. A series of measurements shall 

be performed around the cylinder in an equilibrium scour-depth under a clear-water scour 

regime. An equilibrium scour-depth is defined as the depth of scour hole in front of the 

cylinder that has no longer changed appreciably under a continuous (steady) flow. A 

clear-water scour regime prevails when the scouring process is due solely to the 

interaction of the flow with the obstruction (the cylinder) and that the sediment transport 

does not exist in the approach flow. A live-bed scour prevails otherwise. 

The ADVP shall be used to obtain the vertical distributions of the instantaneous three-

dimensional velocities. The measurements are to be performed at stations distributed 

along vertical planes around the cylinder, outside and inside the scour hole. The hydraulic 

parameters of the experiment are selected according to certain criteria relating to the 

scouring mechanism and the available laboratory facilities and instrumentation. In terms 

of the scouring process, the flow has to maintain a clear-water scour and result in a 

maximum scour depth for the given sediment and cylinder diameter. This can be 

achieved with flows having a velocity close to but less than the sediment entrainment 

velocity. From the instrument point of view, the scour-hole depth shall be small to keep 

the entire flow depth in the range of the instrument measuring capability. 

Given in the following sections are the detailed aspects of the measurements, from the 

setup to the results of the measurements. 

2.2 Experimental setup 

2.2.1 Laboratory channel 

The experiments were conducted in a 29 [m] long and 2.45 [m] wide rectangular 

erodible-bed channel. This wide channel allows for flows with sufficiently large aspect 

ratio in terms of the flow depth and cylinder diameter. Large ratios of channel width, B, 

to cylinder diameter, Dp, guarantee that the flow around the cylinder is a manifestation of 

the interaction between the approaching flow and the cylinder. In the present work, this 

ratio is B Dp  = 16, being sufficiently higher than the generally agreed minimum ratio of 

B Dp  > 8. The large ratios of the channel width to the flow depth, h∞, ensure the 

approaching flow to be a quasi two-dimensional one where the side wall does not 

influence the flow. In the present work, the ratio is B h  = 13.6; this is higher than the 

minimum value usually taken as the criterion, B h  > 7. The general view of the channel 

is shown in Fig. 2.1 and its principal elements are presented in the following paragraphs. 
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Fig. 2.1  General view of the channel. 
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The water circuit is a closed loop in which clear water is circulated. The flow is 

generated from the general sump (1) by a 0.250[m3/s]-capacity pump (2), flowing 

through the hydraulic circuit (3), passing the operating valve (4) and the electro-magnetic 

flow-meter (5), entering the channel through the perforated pipe (6) and the channel inlet-

basin (7). After the inlet basin, a type of honeycomb (8) is provided to distribute evenly 

the flow over the upstream section of the channel. At the downstream of the honeycomb, 

a floating plate (9) is installed to stabilize the water surface. The water flows along the 

channel, passes through the working reach (10) at 10.5 [m] ≤ xL ≤ 14.25 [m] (xL is the 

distance from the entrance) where the cylinder (11) is vertically installed at xL = 11 [m]. 

A basin (12) is provided at the downstream reach to trap the transported sediment. Before 

leaving the channel and going back to the general sump, the water passes through a 

motor-regulated tailgate (13), which is used to control the water-depth in the channel. 

The mobile-bed is made of a uniform sand (14) having a mean diameter of d50 = 2.1 [mm] 

and a distribution ratio of g = 1.3. The sand layer is 50 [cm] in the working reach and 

10 [cm] along the rest of the channel. The sand layer is separated from the bottom of the 

channel by a geotextile-sheet (15) and a layer of gravel (16). These layers avoid the 

deformation of the sand layer when the channel is being slowly filled (at the beginning of 

the experiment) or drained (at the end of the experiment) through the bottom pipes (17). 

The measuring instrument, ADVP, is mounted on a measuring carriage (18) having a 

three-axis positioning equipment allowing the instrument to be positioned at any point 

along and across the channel. 

2.2.2 Acoustic Doppler Velocity Profiler (ADVP) 

Working principles 

The Acoustic Doppler Velocity Profiler (ADVP) conceived and developed at LRH 

(Lhermitte and Lemmin, 1994) is the main measuring instrument in the present work. 

This non-intrusive instrument measures the instantaneous velocity vector at a number of 

layers within the water column. The ADVP has been extensively exploited in the research 

works conducted at LRH. Its modular installation allows a high flexibility in its use. 

Several different configurations have been used in different measurements conducted 

previously at LRH. This section describes the one used in the present work; given also 

are the procedures of the measurement and of the velocity abstraction. Detail technical 

descriptions of the instrument can be found in reports and publications elsewhere 

(Lhermitte and Lemmin, 1994; Rolland, 1994; Hurther et al., 1996). 

The ADVP measures the velocities in a water column based on the back-scattered 

acoustic wave information. An emitting transducer sends an acoustic wave across the 

water column. Upon hitting a target moving with the flow, the wave is reflected and 

captured by one or several receiving transducers. The target can be air bubbles, 

suspended particles, or density fronts due to temperature differences. Knowing the 

frequency difference between the emitted and reflected ones, the so-called Doppler 
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frequency, the velocity of the moving target can be deduced. To obtain profiles of the 

velocity across the water depth, the recording time of the reflected waves is gated 

according to a predetermined interval. This time gate determines the height of the 

measured target. The diameter of the target is obviously determined by the diameter of 

the acoustic beam from the emitting transducer. 

Instantaneous velocity 

The derivation of the instantaneous velocity from the measured Doppler frequency 

depends, among others, on the configuration and/or the placement of the emitter and 

receivers. Several configurations have been used in the measurement works at LRH; they 

are largely determined by the geometry of the measurement fields. For the present work, 

the set-up consists of one conical emitter, T3 , and four plane receivers, T1


, T1


, T2
–

, T2


, 

which are arranged according to Fig. 2.2. 

 

Fig. 2.2  Configuration of the ADVP instrument used in the velocity measurement:  

(a) top view, (b) side view along section I-I, (c) velocity derivation along the tristatic 

plane T3T1

, and (d) velocity derivation along the tristatic plane T1


T3 . 
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Consider a target ―i‖ moving with the flow, passing the acoustic beam emitted from the 

ADVP as shown in Fig. 2.2a,b where the vertical plane T1

T3T1


 is shown (the vertical 

plane T2

T3T2


 is analogous). The dimension of the target constitutes the measuring 

volume which depends on the diameter of the acoustic beam (determined by the type of 

the emitter T3), its distance from the emitter, and the recording time-gate interval. This 

will be described in the later section. 

The three-dimensional instantaneous velocity, ˆ V ˆ u , ˆ v , ˆ w  , is measured by the ADVP as a 

pair of two-dimensional instantaneous velocities, ˆ V 1 ˆ u 1, ˆ w 1  and ˆ V 2 ˆ u 2, ˆ w 2 , i.e. the 

projections of the target velocity on the vertical planes T1

T3T1


 and T2


T3T2


, 

respectively. Both velocities are identified by their components along the longitudinal 

direction, ˆ u 1  or ˆ u 2 , and along the vertical direction, ˆ w 1  or ˆ w 2 , of the respective planes. 

The system of one emitter and a pair of receivers T1

T3T1


 or T2


T3T2


 is called a tristatic 

mode measurement and the vertical plane formed by the system is called a tristatic plane. 

By geometrical relationships, the two measured velocity components, ˆ V 1 ˆ u 1, ˆ w 1  and 

ˆ V 2 ˆ u 2, ˆ w 2 , can be combined to give the target velocity, ˆ V ˆ u , ˆ v , ˆ w   . The following 

paragraphs describe the derivation of the target’s velocity; the procedure follows the one 

given by Rolland (1994). Details are given for the derivation of the velocity component 

ˆ V 1 ˆ u 1, ˆ w 1  by referring to Fig. 2.2c,d; an analogy applies to the other component. 

The instantaneous velocity component along the tristatic plane T1

T3T1


, ˆ V 1 ˆ u 1, ˆ w 1 , is 

obtained from the Doppler frequency measurement by T3T1


 (Fig. 2.2c) and T1

T3  (Fig. 

2.2d) transducers. The frequency difference recorded by the T3T1


 transducers can be 

related to the target velocity ―seen‖ by this couple of transducers according to the 

following expression (Rolland, 1994): 



fD



fe

cs

ˆ V 1





e 1

 ˆ V 3 


e 3









 (2.1) 

where fD

 is the Doppler frequency recorded by the T3T1


, fe is the emitted frequency, cs is 

the speed of acoustic wave in water, and 

e 1

 and 


e 3 are the unit directional vectors of 

T1

 and T3 , respectively. From the geometrical relationships (see Fig. 2.2c), one can 

write: 



ˆ V 1





e 1
  ˆ V 1

  ˆ u 1
 sinD,1

  ˆ w 1
 cosD,1



ˆ V 3 

e 3 

ˆ V 3

 ˆ w 1



 (2.2) 

in which ˆ u 1
i

 and ˆ w 1
i

 are the longitudinal and vertical components, respectively, along 

the tristatic plane T1

T3T1


 as measured by the T3T1


 transducers. Inserting the above 

relation into Eq. 2.1 yields: 
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fD,1



fe

cs

ˆ u 1


sinD,1


 ˆ w 1


1 cosD,1
   (2.3) 

By analogy, similar relations as Eqs. 2.1 to 2.3 exist for the Doppler frequency recorded 

by the transducer T1

T3 (see Fig. 2.2d). The analogy of Eq. 2.1 for the transducers T1


T3  

reads: 



fD



fe

cs

ˆ V 1





e 1

 ˆ V 3 


e 3









 (2.4) 

and by using geometrical relationships (see Fig. 2.2d), it can be shown that: 



ˆ V 1





e 1
  ˆ V 1

  ˆ u 1
 sinD,1

  ˆ w 1
 cosD,1



ˆ V 3 

e 3 

ˆ V 3

 ˆ w 1



 (2.5) 

Thus, one can rewrite Eq. 2.4 as: 

fD,1



fe

cs

ˆ u 1


sinD,1


 ˆ w 1


1 cosD,1
   (2.6) 

If the systems of T1

T3 and T3T1


 are symmetrical about the T3-axis and the measuring 

volume of the two systems is the same, one may write: 

D,1


 D,1


 D,1,     ˆ u 1

 ˆ u 1


 ˆ u 1,   and    ˆ w 1


 ˆ w 1


 ˆ w 1 

Therefore, the instantaneous velocity component ˆ u 1 and ˆ w 1 can be extracted from Eqs. 

2.3 and 2.6, obtained from the T1

T3T1


 system as follows: 

ˆ u 1 
cs fD,1


 fD,1

 
2 fe sinD,1

and ˆ w 1 
cs fD,1


 fD,1

 
2 fe 1 cosD,1 

 (2.7) 

The above relations give the two-dimensional velocity component, ˆ V 1 ˆ u 1, ˆ w 1 , of the 

three-dimensional velocity of the target, ˆ V 
i

ˆ u , ˆ v , ˆ w  ; this is the projection of ˆ V 
i

ˆ u , ˆ v , ˆ w    

on the tristatic plane formed by the T1

T3T1


 transducers. The other two-dimensional 

velocity component, ˆ V 2 ˆ u 2, ˆ w 2 , can be worked out by analogy to Eq. 2.7 for the tristatic 

plane T2

T3T2


. This yields the following expressions: 

ˆ u 2 
cs fD,2


 fD,2

 
2 fe sinD,2

and ˆ w 2 
cs fD,2


 fD,2

 
2 fe 1 cosD,2 

 (2.8) 



– 2.9 – 

Obtaining the velocity components along the two planes, ˆ V 1 ˆ u 1, ˆ w 1  and ˆ V 2 ˆ u 2, ˆ w 2 , it is 

possible to deduce the three-dimensional instantaneous velocity, ˆ V 
i

ˆ u , ˆ v , ˆ w   . In order to 

do this, however, it is necessary that the two velocity components be measured from the 

same measuring volume. This can only be guaranteed if the four receivers, T1


, T2


, T2


, 

and T2


 are placed at the same radial distance with respect to the emitter T3 and at the 

same plane (co-planar) that is parallel to the reference plane (see Fig. 2.2c). If, in 

addition, the emitter T3 is vertical, one may write for the vertical velocity component: 

ˆ w 1  ˆ w 2  ˆ w  (2.9) 

To obtain the horizontal velocity components, (the ˆ u - and ˆ v -components), the measured 

velocities along the two tristatic planes, ˆ V 1 ˆ u 1, ˆ w 1  and ˆ V 2 ˆ u 2, ˆ w 2 , are first projected on 

the horizontal plane to give a resultant horizontal velocity, ˆ V h ˆ u , ˆ v  , whose direction is 

V with respect to the T1

T1

 (see Fig. 2.3). Using geometrical relationships, one writes: 

 for the triangle AC A : AC 
A A 

sinT


ˆ u 2  ˆ u 1 cosT

sinT

 

 for the triangle OAC: ˆ V h  ˆ u 1 2  AC
2 

1 2

 

where T is the angle of the tristatic-plane T2

T2


 with respect to T1

T1


. 

 

 

Fig. 2.3  Derivation of the instantaneous horizontal velocity component, ˆ V h ˆ u , ˆ v  ,  
along the tristatic planes: (a) for ˆ u 1  0 , and (b) for ˆ u 1  0 . 

The horizontal velocity component is thus: 
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ˆ V h  ˆ u 1 2 
ˆ u 2  ˆ u 1 cosT

sinT











2













1 2

 (2.10) 

The velocity direction, V, is given by the relations below: 



V  arcsin
ˆ u 2  ˆ u 2 cosT

ˆ V h sinT









, if ˆ u 1  0

V  180

 arcsin

ˆ u 2  ˆ u 2 cosT

ˆ V h sinT









, if ˆ u 2  0

 (2.11) 

The three relations, Eqs. 2.9, 2.10, and 2.11, are the ones required to describe the three-

dimensional instantaneous velocity of the moving target. It is, however, more convenient 

to describe the velocity by its components along the Cartesian or cylindrical coordinate 

system. The following section discusses the decomposition of the velocity into those 

components. 

Cartesian and cylindrical velocity components 

The Cartesian coordinate axes are defined as x, y, and z for the horizontal, transversal, 

and vertical directions, respectively. The cylindrical coordinate axes are defined as r, 

 =  – 180°), and z for the radial, angular, and vertical directions, respectively  (see 

Fig. 2.4). The origin of the two coordinate systems is defined at the center of the cylinder, 

at the original (uneroded) bed level. 

The decomposition of the velocity into its components along the Cartesian and cylindrical 

coordinate systems depends on the orientation of the ADVP with respect to the 

coordinate system. In the measurements, the instrument is positioned along radial planes 

around the cylinder. Fig. 2.4 shows a typical placement of the ADVP and the 

decomposition of the velocity into its components along the Cartesian and cylindrical 

coordinate systems. 

By using geometrical relationships, the Cartesian velocity components can be obtained 

from the following expressions: 

ˆ u  ˆ V h cos   R  V 

ˆ v  ˆ V h sin   R  V 

ˆ w  ˆ w 1  ˆ w 2

 (2.12) 

where the definitions of the angles are given in Fig. 2.4. 
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Fig. 2.4  Cartesian and cylindrical coordinate systems and the decomposition of the 

measured instantaneous velocity into its components in these coordinate systems. 

The velocity components along the Cartesian and the cylindrical coordinate systems are 

interchangeable by using transformation functional expression as follows: 
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 (2.13b) 

where ˆ u r, ˆ u  , and ˆ w  are the radial, angular, and vertical velocity components, 

respectively, along the cylindrical coordinate system, (r,,z), whose origin is defined at 

the center of the cylinder. 

Time-averaged and fluctuating velocity components 

Obtaining the instantaneous velocity data over the measurement period, the statistical 

parameters can be found. Three quantities are computed, i.e. the mean (the time-averaged 

velocities), the variance (the squared values of the turbulent intensities), and the 

covariance (the Reynolds stresses). 
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The time-averaged velocity components are obtained by: 

u  ˆ u 
1

N V

(ˆ u )j
j1

NV

 ,

v  ˆ v 
1

NV

(ˆ v ) j
j1

NV

 ,

w  ˆ w 
1

NV

( ˆ w ) j

j1

NV



 (2.14) 

where NV is the number of instantaneous velocities obtained from the measurement. 

Having the time-averaged velocity, the fluctuating components, defined as the deviation 

of the instantaneous velocity with respect to the time-averaged value, can be computed 

by: 

u  ˆ u  u, v  ˆ v v,        and w  ˆ w w  (2.15) 

The turbulence (the Reynolds) stresses can thus be obtained by: 

u u 
1

NV 1
(ˆ u  u)j

2 
j1

N V

  ˆ u  
2
 u

2
 (2.16a) 

v v 
1

NV 1
(ˆ v  v) j

2 
j1

N V

  ˆ v  
2
 v

2
 (2.16b) 

w w 
1

NV 1
( ˆ w w)j

2 
j1

N V

  ˆ w  
2
w

2
 (2.16c) 

 u w  
1

NV 1
(ˆ u  u) j( ˆ w w) j 

j1

N V

   ˆ u ˆ w   uw  (2.16d) 

 v w  
1

NV 1
(ˆ v  v) j( ˆ w w) j 

j1

N V

   ˆ v ̂  w   vw  (2.16e) 

Measuring volume, frequency, and duration of velocity acquisition 

The derivation of the Doppler frequency by the ADVP is implemented by recording the 

emitted and reflected wave frequencies. The emitting transducer, T3, sends a series of 

short trains sinusoidal acoustic waves (pulse) repetitively at a regular time interval (the 

pulse repetition frequency, PRF). Between two successive pulses, the receiving 

transducers, T1


, T1


, T2


, and T2


 receive the back-scattered signals. The electronic 

system of the ADVP detects and records the intensity and the phase of the incoming 

signals at every receiver. The recording process is gated in time in which one time-gate, 

Tg, corresponds to one target. The instantaneous velocity is deduced from the velocity of 

the target, the volume of which, therefore, represents the measuring volume. The 

diameter of the target is determined by that of the acoustic beam emitted from the 

transducer T3, where as its thickness is defined by the time-gate, Tg. Two types of 
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transducer were used, a focused-type and a plane-type transducers. The focused-type 

transducer was used for measurements at depth h ≤ 18 [cm] where the time-gate was 

specified to Tg = 4 [s]. The measuring volume has a dimension of (see Fig. 2.2b): 

thickness d  3 [mm], diameter   6 [mm]. The plane-type transducer was used for 

measurements at depth h > 18 [cm] with the time-gate fixed at Tg = 6 [s]. In these 

measurements the measuring volume has a dimension of: thickness d  4.5 [mm], 

diameter 9   [mm] 26 . 

To obtain the time series of the instantaneous velocities of a target, the recorded 

intensities and phases of the signals are grouped in which each group contains a number 

of intensity-phase data-pairs obtained from several pulses (the number of pulse-pairs, 

NPP). A value of NPP of 32 is used in the present work. From each group, one Doppler 

frequency is obtained at each receiver. The instantaneous velocity can then be derived 

from the Doppler frequency according to Eqs. 2.7 and 2.8. There exists, therefore, a 

relation between the pulse frequency, PRF, the number of pulse-pairs, NPP, and the 

frequency of the data acquisition, fV: 

fV  PRF NPP (2.17) 

If the acquisition is done within the duration of Tacq, the number of instantaneous 

velocities, NV, for one measurement is: 

NV  fV Tacq (2.18) 

The measurements in the present work were conducted with a data acquisition frequency 

of fV = 20.8 to 28.4 [Hz] (PRF = 667 to 909 [Hz]). The duration of the acquisition was 

Tacq = 150 [s] for measurements at the uniform approach flow and was Tacq = 60 [s] for 

measurements around the cylinder. There are thus 3,140 instantaneous velocity data at 

every gate (measurement point) for the measurements at the uniform approach flow, 

while for the measurements around the cylinder there are 1,250 to 1,700 data. 

2.2.3 Other measuring instruments 

Besides the ADVP, some other measuring equipment were employed for different 

purposes: 

 Point-gauge limnimeter: to map the water surface and the channel bed. 

 Periscope: to measure the scour depth. The equipment is inserted in the cylinder, 

which is transparent. The scour bed can be easily viewed through the mirror provided 

at the periscope. 

 Electro-magnetic discharge meter: to detect the discharge passing through the circuit. 

 Theodolite: to measure the slope of the channel bed. 
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2.2.4 Flow parameters 

The experiment is designed such that the scour hole is at its maximum depth for a given 

diameter of the cylinder, but a clear-water scour is still maintained. This can be achieved 

if the flow velocity is lower than but close to the sediment entrainment velocity. Given 

the available sediment size of d50 = 2.1 [mm] and a predetermined bed slope of 

So = 0.00055, a preliminary run without the cylinder was performed. The discharge and 

the flow depth were regulated such that the sediment particles were about to move and a 

uniform flow depth was maintained along the working reach. It was found that the 

discharge is of Q = 0.2 [m3/s], the flow depth is of h  0.18 [m] and the average 

velocity is of U  0.45 [m s]. 

The diameter of the cylinder is dictated by the measurement’s technical factors. The 

present configuration of the ADVP cannot measure the zone closer than 3 [cm] from the 

leading edge of the cylinder and the zone deeper than 50 [cm] from the water surface. 

The first constraint suggests that big cylinders are preferred to small ones since the 

closest measured profile will be very close with respect to the diameter of the cylinder. 

The second constraint, on the other hand, limits the diameter of the cylinder since the 

bigger the cylinder, the deeper the scour will be. From those criteria, and after conducting 

some preliminary test runs, the diameter of the cylinder was determined as Dp = 15 [cm]. 

Table 2.1 summarizes the pertinent hydraulic parameters of the present measurement. 

Table 2.1  Hydraulic parameters of the experiment 

B 

[m] 

So 

[10–4] 

Q 

[m3/s] 

h∞ 

[cm] 

B/h∞ 

[cm] 

U∞ 

[m/s] 

Fr 

[–] 

Reh  

[–] 

d50  

[mm] 

DP  

[cm] 

ReDp

[–] 

B DP

[–] 

h Dp

[–] 

DP d50

[–] 

2.45 5.5 0.2 18 13.6 0.45 0.34 81,000 2.1 15 67,500 16.3 1.2 70 

 

2.2.5 Experimental procedures 

The experimental procedures basically consist of three major steps. 

(1) Measurements of velocity of the uniform (approaching) flow. Without the cylinder, 

a uniform flow was established in the channel; measurement of the corresponding 

velocity was then carried out. This step is aimed at obtaining velocity data of the 

flow ―unperturbed‖ by the cylinder. The data serve as the reference data with which 

the measured data around the cylinder shall be compared. 

(2) Establishment of the scour hole. The cylinder was vertically mounted in the 

working reach of the channel, at 11 [m] from the entrance. Starting with a flat bed, 

the flow was released and allowed to erode the sediment around the cylinder. The 

time development of the scour depth at the leading edge of the cylinder was 

monitored. The flow was maintained until the equilibrium scour depth was 

obtained, that is when it has no longer appreciably changed. A 5-to-7 day run was 
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typically needed for this purpose. The channel was drained and the scour geometry, 

considered as the (near) equilibrium one, was mapped by point-gauge measurement. 

(3) Measurements of the flow fields around the cylinder. Vertical distributions of the 

velocity vector were measured at radial planes of   n15

, n = 0, 1, 2, ..., 12. A 

number of 15 to 25 profiles were obtained at each plane. Due to technical reasons, 

the flow had to be occasionally stopped between measurements. In such a case, care 

was taken in restarting the flow such that the scour geometry was not disturbed. 

When a run was stopped, the water in the channel was slowly evacuated through the 

bottom pipes. To restart the run, the water was carefully supplied into the channel 

from the same pipes until a sufficient water depth was obtained in the channel. The 

supply was then replaced by pump through the hydraulic circuit. The discharge was 

regulated, starting with a small one and being gradually increased until the designed 

one. The flow depth at the channel was, at the same time, adjusted by regulating the 

tailgate. 

2.3 Preliminary experiments 

2.3.1 Scour depth measurements 

Before arriving to the flow parameters selected for the velocity measurements (see Table 

2.1 in Sect. 2.2.4) a series of preliminary experiments had been carried out. These 

experiment tests provided also knowledge of the scour processes, notably the time 

development of the scour depth. Four preliminary runs were performed, namely Test 1, 2, 

3 and 4, with the cylinder diameters of D p  = 11, 10, 15, and 20 [cm]. The hydraulic 

parameters of these test runs are listed in Table 2.2. During the test runs, some 

modifications were made to the experimental installation to get the best hydraulic 

performance, such as improvements made to the inlet and the outlet sections. 

Table 2.2  Hydraulic parameters of the preliminary experiment 

Test 
d50 

[mm] 

Q 

[m3/s] 

h∞ 

[m] 

Dp 

[m] 

ds 

[m] 

Dp/d50 

[–] 

h∞/Dp 

[–] 

ds/Dp 

[–] 

1 2.1 0.220 0.170 0.11 0.174 52.38 1.54 1.55 

2 2.1 0.250 0.232 0.10 0.195 47.62 2.32 1.95 

3 2.1 0.250 0.232 0.15 0.259 71.43 1.55 1.73 

4 2.1 0.250 0.232 0.20 0.319 95.24 1.16 1.60 

 

In the test runs only the time development of the scour depth was measured; the velocity 

was not measured. Visual observation, however, suggested that the bed particles were 

about to move, thus U Ucr  1, where Ucr is the critical velocity for particle entrainment. 

The scour depth measurements were made at the leading edge of the cylinder where the 
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maximum depth was observed. The cylinder was transparent allowing the measurements 

be made from inside the cylinder with the help of a periscope. The equilibrium scour 

depths obtained after about 120 [hours] for all tests are shown in Table 2.2. 

2.3.2 Time evolution of scour depth 

The time histories of the scour depth are depicted in Fig. 2.5a,b plotted in normal and 

logarithmic scales. 

Observation of the scour development within the first 3 to 5 [minutes] revealed that the 

scouring process was very active. The scour initiated at two points approximately 90° to 

the right and left off the centerline. The initial scouring propagated upstream along the 

perimeter of the cylinder and the two scours met at the leading edge of the cylinder. The 

scour depth increased rapidly that at the end of the first hour it reached 50% of the 

equilibrium depth. The rate of scour slowed down during the next 48 [hours], after which 

the scour depth did not show a significant increase. In the fifth day the scour depth did 

not change appreciably; the scour geometry thus obtained was considered as a near 

equilibrium one. 

The equilibrium scour depths from the four test runs are in the range of 

1.55  ds Dp  1.95, which are in the range of the measurements reported in the literature 

(see Fig. 2.6 and the discussion given in the next section). 

 

 

Fig. 2.5  Relative scour depth at clear water scour versus time in (a) the normal scale and  

(b) the logarithmic scale 
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2.3.3 Comparison to other measurements 

Various factors affect the scour depth; those are the fluid, the flow, the sediment, and the 

cylinder itself (Breusers et al., 1977; Breusers and Raudkivi, 1991; Graf and Altinakar, 

1996). The time may also have an effect (Melville, 1975). A general function relating the 

relative scour depth, ds/Dp, to the dimensionless parameters is given as follows (Graf and 

Altinakar, 1996): 

ds

Dp

 f
U

Ucr

,
h

Dp

,
d

Dp

; g, s, 









 (2.19) 

in which d is the sediment diameter, g, s and  are dimensionless correction 

coefficients due to the sediment grading, pier shape, and pier alignment, respectively. The 

influence of those coefficients on the relative scour depth is given in graphical forms 

based on various measurement data (see Graf and Altinakar, 1996); it is reproduced here 

in Fig. 2.6. For a cylindrical pier aligned with the flow as in the present experiment, there 

is not any correction due to neither the shape nor alignment of the pier, s =  =1. 

Putting the results of the present measurements on these graphs, it can be seen that the 

effect of the flow velocity and flow depth agrees reasonably with the other measurements 

(see Fig. 2.6a,b). The effect of the sediment diameter in the present measurements, 

however, underestimates the scour depth when compared with the other measurements 

(see Fig. 2.6c). The coefficient of sediment grading, g, —taking as g = 0.9 (see Fig. 

2.6d)— may explain partially this underestimation. 

2.3.4 Selected cylinder diameter 

Based on those preliminary experiments and technical considerations relating to the 

ADVP configuration, the D p  = 15 [cm] cylinder was selected for the experiment with the 

velocity measurements (see Sect. 2.2.4). The flow parameters were modified slightly, by 

selecting a smaller discharge, Q = 0.200 [m3/s], and accordingly a lower flow depth, 

h∞ = 18 [cm] (see Table 2.1). The maximum scour depth with this selected flow 

parameters is ds = 25 [cm] (ds/Dp = 1.7), which was obtained after a 5-day of continuous 

run. Fig. 2.7 shows the geometry of this scour hole. The ridge formed by the deposition 

of the bed material in the downstream section extends up to 5 [m] from the cylinder; the 

original bed level was found 0.5 [m] further downstream. 
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Fig. 2.6  Comparison of the measured relative scour depth with other measurements  

(see Graf and Altinakar, 1996) 
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Fig. 2.7  Scour hole geometry obtained with the selected flow configuration, 

Q = 0.200 [m3/s], U∞ = 0.45 [m/s], h∞ = 18 [cm], and Dp = 15 [cm]. 

 

2.4 Velocity measurements in the uniform approach flow (without 

cylinder) 

2.4.1 Measurement stations 

The measurement of velocity in the uniform flow (it will be the approach flow when the 

cylinder is installed) is intended to provide the reference flow data, which shall be useful 

later in analyzing the flow data from the measurements around the cylinder. 

Six vertical distributions of velocity were measured at stations xL [m] = 9, 10, 11, 12, 13, 

and 14 along the centerline of the channel. At each station, 52 data points are obtained 
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throughout the flow depth. The velocity was measured at a frequency of 20.8 [Hz] during 

150 [s]; this produces a total number of instantaneous velocities of 3140 at each data 

point. The measurement data are presented in the form of vertical distributions of the 

time-averaged velocity, of the turbulence intensity, and of the Reynolds stress. The 

Cartesian coordinate system is used. 

2.4.2 Vertical distribution of the (time-averaged) velocity 

Fig. 2.8 shows the vertical distributions of the time-averaged velocities measured at the 

six stations. For writing simplicity the term ―velocity‖, otherwise explicitly stated, will be 

used to describe the time-averaged velocity. In uniform flows, the vertical distribution of 

the longitudinal velocity, u(z), can be described by the universal law-of-the-wall, for the 

so-called inner region, z h  0.2 , and by the Coles law-of-the-wake for the entire flow 

depth, except within the viscous layer, 0.1 z h  1. 

Assuming the flow is hydraulically rough, the law-of-the-wall reads (Graf and Altinakar, 

1998, p. 56): 

u z 

u


1


ln

z

ks









BR  (2.20) 

where u  is the friction velocity, ks is the equivalent standard roughness of the bed 

( ks  d50  2.1[mm]), BR is a constant of integration, and  is the Karman constant 

( = 0.4). The origin of the vertical distance, z = 0, is defined at a level 0.2ks below the 

peaks of the bed roughness. By using the best fit method of Eq. 2.20 to the logarithmic 

plot of the measured longitudinal velocity data for z ≤ 0.2h (see Fig. 2.8a), the friction 

velocity, u , and the constant of integration, BR , can be obtained and are presented in 

Table 2.3 The average values from the six measurements are u   2.7 [cm s] and 

B R  8.75 []. The average value of BR  falls in the range of values reported in the 

literature, i.e. 8.5 ± 15% (see Graf and Altinakar, 1998, p. 56). 

Using the friction velocity, u   2.7 [cm s], and taking the viscosity of water, 

 10
6

 [m
2

s], the Reynolds number computed based on the bed standard-roughness is 

found as Rek s
 u ks   57. This value, being less than 70, suggests that the bed is not 

completely rough. 

The vertical distribution of the velocity can be expressed by the Coles law-of-the-wake 

which is valid for the inner and outer regions (except within the viscous layer). For the 

hydraulically rough uniform flow, the Coles equation can be written in the following 

form (see Song et al., 1994): 

u z 

u


1


ln

z

ks









BR 

2


sin

2 z

2h







 (2.21) 
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Fig. 2.8  Distributions of the longitudinal velocity, u(z), of the approach flow: 

(a) in the inner region according to the law-of-the-wall, and (b) in the inner- and outer-

regions according to the Coles law-of-the-wake. 
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where  is the wake-strength parameter. Using the friction velocity previously obtained 

and the measured u-component data for the inner and outer regions (see Fig. 2.8b), the -

value at every station can be determined from the difference between the measured value 

and the theoretical one at the water surface, which is equal to 2. Since the velocity 

data at the surface is not available, the upper most value was selected as an 

approximation;  these are presented in Table 2.3 The average -value obtained from this 

operation, being   = 0.28, is in the range of the values reported in the literature, i.e. 

0.1 ≤  ≤ 0.3 (see Graf and Altinakar, 1996, p. 58). 

Table 2.3  Parameters of the vertical distributions of u-velocities and  

the Reynolds shear-stresses of the approach flow. 

 

Station 

From the u-profile From the  u w -profile 

 BR u  

[cm/s] 

u  [cm/s] o  [m
2

s
2
]  

xL = 9 [m] 0.29 8.24 2.76 2.64 6.9410
4

 

xL = 10 [m] 0.44 9.09 2.57 2.57 6.6010
4

 

xL = 11 [m] 0.44 9.35 2.48 2.80 7.8410
4

 

xL = 12 [m] 0.20 9.25 2.62 2.39 5.7010
4

 

xL = 13 [m] 0.20 8.57 2.69 2.93 8.5810
4

 

xL = 14 [m] 0.09 8.02 2.82 2.52 6.3310
4

 

Average 0.28 8.75 2.70 2.60 7.0010
4

 

 

2.4.3 Vertical distribution of the turbulence intensities 

The intensity of turbulence is defined as the root mean square of the fluctuating 

velocities, u u , v v , and w w . Fig. 2.9 shows the vertical distributions of the 

turbulence intensities measured at the six stations. The data have been normalized by the 

friction velocity, u  2.7 [cm/s]. As can be seen in Fig. 2.9, all three components of the 

turbulence intensities decrease with an increase in depth. Close to the bed, however, there 

is a decreasing tendency in the longitudinal, u u , and vertical, w w , components 

which is not observed for the transversal component, v v . The measured turbulence 

intensities shall be compared with the expressions of the turbulence intensities proposed 

by Nezu and Nakagawa (see Nezu and Nakagawa, 1993, p. 24) which are given in the 

following form: 
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Fig. 2.9  Turbulence intensities of the approach flow. 

 

u u u  Du exp Cu z h 

v v u  Dv exp Cv z h 

w w u  Dw exp Cw z h 

 (2.22) 

where, Cu,Cv,Cw , and, Du, Dv,Dw , are empirical constants. These constants are 

supposedly independent of the Reynolds and Froude numbers with the values of: 

Du = 2.30, Dv = 1.63, Dw = 1.27, and Cu = Cv = Cw = 1 (see Nezu and Nakagawa, 1993, p. 

24). Slightly different values were reported from measurements in hydraulically rough 

flows: Du = 2.04 with Cu = 0.97 and Dw = 1.14 with Cw = 0.76 (see Kironoto and Graf, 

1994). By applying regression method to the present data and using Eq. 2.22, the 

constants D and C, and their correlation coefficient R2, are as follows: 

Du = 2.57 (2.04) [2.30],  Cu = 0.90 (0.97) [1.0], R2 = 0.97, 

Dv = 1.74 (—) [1.63], Cv = 0.79  (—) [1.0], R2 = 0.98, 

Dw = 0.91  (1.14) [1.27], Cw = 0.67 (0.76) [1.0], R2 = 0.50.  

The values inside the parentheses are according to Kironoto and Graf (1994) and those in 

the square brackets are according to Nezu and Nakagawa (1993). As can be seen, the 

vertical component of the turbulence intensity has the least correlation coefficient. The 
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plot of w w  indicates that it is not exponentially distributed. It is not clearly known 

what may cause this deviation of the measured and theoretical distributions of w w ; 

other measurements at LRH have also the same phenomenon (see Cellino, 1998; 

Yulistiyanto, 1997). 

2.4.4 Vertical distribution of the Reynolds shear-stresses 

Fig. 2.10 shows the vertical distributions of the Reynolds stresses measured at the six 

stations. The transversal component of the Reynolds stress,  v w , is always negligible 

compared to the longitudinal component,  u w . 

 

 

Fig. 2.10  Reynolds shear-stresses of the approach flow. 

 

The Reynolds stress,  v w , can be interpreted as the total shear stress since the viscous 

component of the shear stress is negligible compared to the turbulence stress in the most 

part of the flow depth. Its vertical distribution is linear with a zero stress at the water 

surface and a maximum at the bed. It is given by (Graf and Altinakar, 1998, p. 64): 

zx    u w  o  1 z h  u
2 1 z h  (2.23) 

in which the origin of the vertical distance, z = 0, is defined at a level 0.2ks below the 

peaks of the bed roughness. The above relation can be used to obtain the bed shear stress, 
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o , and accordingly the friction velocity, u , from the measured distribution of  u w . 

The measured Reynolds stress shows that it is linearly distributed in the outer region (see 

Fig. 2.10). However, within the inner region and towards the bed, the distribution swings 

and diminishes. The reason of this phenomenon is not yet been known. It is suspected 

that an inherent characteristic of the measuring instrument, due most probably to the 

difficulty in obtaining clear acoustic back-scattered signals at regions close to the bed, 

might have contributed to this phenomenon (see also Cellino, 1998; Yulistiyanto, 1997). 

For that reason, the bed shear stress is obtained by best fitting of Eq. 2.23 to the measured 

data at the outer region, z h  0.2 , and extrapolating the fitted line to the bed, z = 0, to get 

o and u  (see Fig. 2.10). The bed shear stress and the friction velocity obtained at the six 

stations are presented in Table 2.3. The average u-value, being u  2.60 [cm s], is 

rather close to the one computed previously from the velocity profile.  

2.5 Velocity measurements around the cylinder 

2.5.1 Measurement strategy 

The flow along the channel is assumed to be symmetrical about the line passing through 

the center of the cylinder. This assumption was taken for practical reasons since the flow 

in the scour hole along the plane of symmetry is not completely two-dimensional as will 

be evidenced from the measurements. The measurements were performed at the one-half 

area around the cylinder. Vertical distributions of the instantaneous velocities were 

obtained at the measuring stations located at P(r,,z) (see Fig. 2.11), where r [cm] is the 

radial distance (r = 0 is the center of the cylinder),  [°] is the angular direction of the 

plane ( =  – 180°), and z [cm] is the vertical direction (z = 0 is in the original uneroded-

bed level). While the positioning of the measurement stations was expressed according to 

the cylindrical coordinate system, (r,,z), the velocities were decomposed into its 

components along the Cartesian coordinate system, (u,v,w). The coordinate 

transformation (see Fig. 2.4 and Eq. 2.13) provides the relation between these two 

coordinate systems. Five main radial-planes:  = 0°, 45°, 90°, 135° and 180° (see Fig. 

2.11a) were selected in which about 15 to 25 verticals were obtained for each plane. 

Additional measurements, with fewer verticals (8 to 10 verticals), were performed at 6 

planes:  = 15°, 30°, 60°, 75°, 105° and 120°. These measurements provide 

supplementary data that may be necessary in the analyses of the flow pattern (this will be 

treated in Chapter 5). For technical reasons, each plane was divided into three zones: 

A(r  20,, z 5), B(r,,z  5) and C(r  20,, z 5) (see Fig. 2.11b). Measurements 

were possible in the zones A and B, but technical difficulties hinder the measurement in 

zone C, being a ―blank zone‖ where data cannot be obtained. The measurements in zones 

A and B were performed such that the data obtained from the two measurements overlap. 

The overlap is generally made at 7 ≥ z [cm] ≥ –2, that is, the measurements at zone A 

penetrate up to z = –2 [cm] and those in zone B start at z = 7 [cm] (see Fig. 2.11c). 
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Fig. 2.11  Measurement stations around the cylinder and ADVP positioning  

(scale in [cm]). 
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Measurements in zone A. The emitter and the receivers of the ADVP-instrument were 

placed in a water-filled housing at the water surface (see Fig. 2.11c). A mylar film was 

provided as the contact medium between the housing and the water surface. Precautions 

were taken in positioning the housing so that least contact between the mylar and the 

water surface was maintained to minimize flow perturbation. Nevertheless, the data 

within 2 [cm] from the water surface are considered not to be reliable and are excluded. 

A focused-type emitter was used which has the advantage of having a small-diameter 

acoustic-beam of 6 [mm], which is also the diameter of the measurement volume 

(a 4 [s] time-gate was used which corresponds to a thickness of the measuring volume 

of 3 [mm], see Sect. 2.2.2). The transducer was positioned several centimeters, 14 to 

18 [cm], above the water surface; this distance is required to avoid the parasite acoustic 

signals reflected by the mylar. The measurements, however, were not possible for the 

depth of more than 20 [cm] (zone B) due to the limit of the effective distance of the 

emitted wave. The instrument housing hinders, furthermore, measurements at radial 

distance closer than 20 [cm] (zone C). Some of the measurement data at zone A 

downstream of the cylinder (plane  = 180°), at r ≤ 38, have to be interpreted with 

caution. The measurements at that part was difficult, the acoustic signals recorded by the 

ADVP-instrument were not clean, and thus the data quality is less good than that of the 

other part. This problem is due to a fluctuating water surface, that makes the placement of 

the instrument housing difficult, and the air entrainment into the flow, that frequently 

blocks and disturbs the acoustic waves. The fluctuating water surface and the air 

entrainment are provoked by the wake-vortices downstream of the cylinder. 

Measurements in zone B. The ADVP was put directly at the water surface, penetrating 

about 0.5 [cm] into the flow (see Fig. 2.11c). To minimize the perturbation of the 

instrument to the flow, a small emitter, of diameter 28 [mm], was used. This allows also 

the measurements close to the cylinder, up to r = 10 [cm] (2.5 [cm] from the leading edge 

of the cylinder). The configuration, however, cannot measure area closer than 10 [cm] 

from the emitter (zones A and C). The measuring volume with this type of emitter is of 9 

to 26 [mm] (diameter) and of 4.5 [mm] (thickness). 

2.5.2 Data presentations 

The results of the measurements are presented as the vertical distributions (z profiles) of 

the velocities, turbulence intensities, and Reynolds stresses in their Cartesian coordinate 

components at different measuring verticals, P(r,,z). The measurements are presented in 

the following figures, Fig. 2.12 to Fig. 2.16; they are classed first for each radial plane 

( = 0°,  = 45°, etc.) and subsequently according to the radial position in the order of 

approaching the cylinder. Brief discussions are given to the data in each plane. Measured 

data from the additional planes ( = 15°, 30°, etc.) will be presented in the succeeding 

chapter (see Chapter 5) where more detailed analyses of the data will be elaborated. The 

terms upper layer and lower layer (see Fig. 2.11) are frequently used in the following 

presentation to distinguish the regions above and below the original uneroded-bed level,  

z = 0, respectively. Other terms, the far region and the scour-hole region are used to 
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identify the uneroded area beyond the outer line of the scour hole and the one inside the 

scour-hole perimeter, respectively (see Fig. 2.11). 

2.5.3 Measurements in the plane  = 0° 

The scour hole in the plane  = 0° starts at r ≈ 45 [cm] (3D p) with the maximum scour 

depth of ds = 25 [cm] (1.67h ) at the leading edge of the cylinder; the downward incline 

into the scour-hole is thus  = 35°. At 26 stations, vertical distributions of velocities, 

Reynolds stresses, and turbulence intensities are obtained from the measurements in the 

plane  = 0°, being the plane of symmetry upstream of the cylinder. The data were 

obtained in the radial distance of 10 ≤ r [cm] ≤ 80, which cover the far region (the 

approach flow) and the scour hole region. For r ≥ 20 [cm], the data cover almost the 

entire flow depth (zones A and B), while for r < 20 [cm], the data are only available at 

z ≤ 5 [cm] (zone B). The measured distributions are plotted and presented in Fig. 2.12; 

here the data at r = 80 [cm], being very much similar to those at r = 70 [cm], are not 

shown. 

Velocities in the plane  = 0°. The u-component is dominant along the most part of this 

plane of symmetry. In the far region, r ≥ 45 [cm], the v- and w-components are 

practically negligible. Entering the scour-hole region, r ≤ 45 [cm], the u-component 

remains important up to close to the cylinder, notably within the upper layer, z ≥ 0. This 

component does not show the effect of the cylinder until as close as r = 20 [cm]. Taking 

the u-component at z = 0, one observes that it is almost constant at u ≈ 0.4 [m/s] (0.9U∞) 

before decreasing to u ≈ 0.2 [m/s] (0.45U∞) approaching the cylinder. From r = 30 [cm], 

at the lower layer and approaching the cylinder, the w-component, being a downward 

component, becomes important. It usually reaches a negative maximum value in the 

upper layer of the scour hole, w ≈ –0.27 [m/s] (–0.6U∞) and tends towards zero or slightly 

positive values at the solid boundary of the scour hole. Close to the solid boundary of the 

scour hole and notably at the range of 16 ≤ r [cm] ≤ 32, noticeable is a return flow 

formed by a negative u-component and a positive w-component. The v-component shows 

a noticeable deviation from zero at the lower layer and approaching the cylinder; it has a 

tendency of being biased towards one side. Close to the cylinder, the v-component shows 

non zero values (positive and negative ones) with a maximum value of v = –0.045 [m/s] 

(0.1U∞) at the lower layer. This suggests that the flow along the plane of symmetry, 

notably at the lower layer, is not completely two-dimensional. 

Turbulence intensities in the plane  = 0°. The measured turbulence intensities, 

presented as the root-mean-square (rms) of the fluctuating components of the velocity, 

u u , v v , and w w , are shown in the second column of Fig. 2.12. In the far 

region, r ≥ 45 [cm], their vertical distributions are similar to those of the uniform 

approach flow. Within the scour-hole region, the distributions show little effect of the 

cylinder within the upper layer and be particularly characterized by a sharp turn towards a 

peak underneath the z = 0. The peak becomes noticeable at r = 36 [cm] and remains so up 

to r = 10 [cm]. The u u -peak is more or less constant of about u u  ≈ 0.08 to 

0.09 [m/s]. The peaks of the other components are always smaller, being about 0.5 u u  
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and 0.3 u u  for the v v  and w w , respectively. Close to the solid boundary of the 

scour hole, there is a strong tendency that the u u  and v v  increase; this increase 

becomes important approaching the cylinder where maximum values of 

u u  0.20 [m s] and of v v  0.10 [m s] are observed. Close to the cylinder, the 

vertical component has a maximum value of w w  0.04 [m s]. 

Reynolds stresses in the plane  = 0°. The measured Reynolds shear-stresses, presented 

by the  u w  and  v w  components, are shown in the third column of Fig. 2.12. The 

linear distribution of the  u w , similar to that in the uniform approach flow, is observed 

within the far region, r ≥ 45 [cm], and remains so within the upper layer of the scour-hole 

region, z ≥ 5 [cm] and r ≤ 45 [cm]. Within the scour-hole region and at the lower layer, 

z ≤ 5 [cm] and r ≤ 45 [cm], the distribution sharply turns towards a peak  u w  

underneath the z = 0. The peak moves downward as the scour hole becomes deeper 

approaching the cylinder. The peak becomes pronounce at 34 ≥ r [cm] ≥ 28 with values 

ranging at 0.0015 ≤  u w  [m2/s2] ≤ 0.002. Below the peak, the  u w  decreases with 

increasing scour hole. Approaching the cylinder, there are negative  u w -values near 

the solid boundary of the scour hole. Approaching the cylinder, the negative  u w  

constantly increases from –0.005 at r = 18 [cm] to –0.002 [m2/s2] at r = 10 [cm]. The 

negative values correspond with the return flow component as previously described. The 

 v w  remains essentially insignificant and is much smaller than the  u w  up to 

r = 13 [cm]. The  v w  becomes comparable with the  u w  only close to the cylinder 

and within the lower layer where the distribution of the two components is similar, being 

characterized by a noticeable peak. 
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Fig. 2.12a  Vertical distributions of the measured velocities, turbulence intensities, and  

Reynolds stresses in the plane  = 0°. 
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Fig. 2.12b  Cont’d. 
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Fig. 2.12c  Cont’d. 
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Fig. 2.12d  Cont’d. 
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Fig. 2.12e  Cont’d. 
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2.5.4 Measurements in the plane  = 45° 

The scour hole in the plane  = 45° starts at r = 45 [cm] (3D p) with the maximum depth 

of ds = 25 [cm] (1.67h∞) at the leading edge of the cylinder; the downward incline into 

the scour hole is thus  = 35°. The measurements in the plane  = 45° were performed at 

10 ≤ r [cm] ≤ 80; for r ≥ 22 [cm] the data were obtained from almost the entire depth 

(zones A and B), while for r ≤ 20 [cm], the data were taken from z ≤ 5 [cm] (zone B). 

There are 26 vertical distributions of the velocities, the turbulence intensities, and the 

Reynolds stresses obtained. The measured distributions are presented in Fig. 2.13, which 

are plotted in the order of approaching the cylinder. The data at r = 80 [cm], being very 

much similar to those at r = 70 [cm], are not shown. 

Velocities in the plane  = 45°. The vertical distributions of the u-, v-, and w-velocities 

in the far region, r ≥ 45 [cm], as have also been observed in the far region of the plane 

 = 0°, have little indication of the cylinder effect. Their distributions are very much 

similar to those of the uniform approach flow. At the approach region, the u-component 

is dominant over the other components and this remains so throughout the upper layer of 

the scour hole region. The u-component is always positive at the upper layer. At the 

lower layer and at 24 ≤ r [cm] ≤ 36, there is a weak tendency of negative u-velocities, 

having a magnitude of u ≈ 0.045 [m/s] (0.1U∞). The v- and w-components are negligible 

in the far region, but entering the scour-hole region and approaching the cylinder, they 

become pronounced; at the lower layer they are comparable to the u-component. In the 

scour-hole region, the flow is skewed, having negative v-components at the upper layer 

(the flow deflects away from the cylinder) and positive v-values at the lower layer (the 

flow skews towards the cylinder). Approaching the cylinder, the negative v-component 

becomes more important than the positive one, reaching the maximum value of v ≈ –

0.18 [m/s] (–0.4U∞) at r ≤ 14 [cm]. Similar observation can be made to the w-component; 

it appears as a downward flow that becomes more significant when approaching the 

cylinder. This downward flow is less strong compared to that in the plane  = 0°. The 

maximum downward flow here is w ≈ –0.22 [m/s] (–0.5U∞) at r = 10 [cm], which is 80% 

of that in the plane  = 0°. At 16 ≤ r [cm] ≤ 34 and close to the solid boundary of the 

scour hole, where there is a tendency of negative u-component, the w-component shows a 

positive value with the maximum value of w ≈ 0.06 [m/s] (0.13U∞). 

Turbulence intensities in the plane  = 45°. In the far region, r ≥ 45 [cm], similar 

observations as those for the velocities can be made to the turbulence intensities; the 

intensities of the turbulence remain unaffected by the presence of the cylinder. Their 

distribution resembles that of the uniform approach flow. This is also the case at the 

upper layer of the scour-hole region. At the lower layer of the scour-hole region, the 

u u , v v , w w  components have a sharp turn towards the peak underneath the 

z = 0 [cm]. Far from the cylinder, the u u  is always dominant than the other 

components, but approaching the cylinder and at the lower layer, the u u  and v v  

become comparable. The two components have a strong tendency of increasing close to 
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Fig. 2.13a Vertical distributions of the measured velocities, turbulence intensities, and  

Reynolds stresses in the plane  = 45°. 
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Fig. 2.13b  Cont’d. 
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Fig. 2.13c  Cont’d. 
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Fig. 2.13d  Cont’d. 
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Fig. 2.13e  Cont’d. 
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the solid boundary of the scour hole, particularly at 15 ≤ r [cm] ≤ 32. The w w  

component, on the other hand, does not show this kind of tendency. Further close to the 

cylinder, the u u  and v v  are monotonically distributed with the maximum value at 

the bed. Compared to the plane  = 0°, there is a moderate increase in the v v , while 

the other components, u u  and w w  remain essentially equivalent.

Reynolds stresses in the plane  = 45°. In the far region, r ≥ 45 [cm], there is no clear 

sign of the effect of the cylinder as also evidenced from the velocity and turbulence 

intensity data. The  u w  is linearly distributed over the entire depth and the  v w  is 

essentially insignificant. This phenomenon continues into the upper layer of the scour-

hole region and remains so up to close to the cylinder. The  u w  in general behaves like 

in the plane  = 0°. At the lower layer, the  u w  shows a sharp turn toward a peak 

(positive) value which, at 24 ≤ r [cm] ≤ 28, is interrupted by a negative peak. Close to the 

cylinder, r ≤ 14 [cm], the peak disappears and the  u w  turns toward negative values 

close to the bed. For the  v w , there are two peaks of negative or positive magnitudes of 

 v w  0.0005 [m2/s2]. Approaching the cylinder, the  v w  is at the negative 

magnitude; this seems to correspond with the negative v observed at this region. 

2.5.5 Measurements in the plane  = 90° 

The scour hole in the plane  = 90° starts at r = 52 [cm] (3.5D p) with the maximum 

depth of ds = 24 [cm] (1.33h∞) at the leading edge of the cylinder. The measurements in 

the plane  = 90° were performed at 10 ≤ r [cm] ≤ 80. For r ≥ 22 [cm] the data were 

obtained from the entire depth (zones A and B), while for r ≤ 20 [cm], the data were 

taken from z ≤ 5 [cm] (zone B). There are 26 vertical distributions of the velocities, the 

turbulence intensities, and the Reynolds stresses obtained. The measured distributions are 

shown in Fig. 2.14; the data at r = 80 [cm] are not shown. 

Velocities in the plane  = 90°. The velocities in the far region, r ≥ 50 [cm], as the 

measurements in the two previous planes have shown, are not altered by the presence of 

the cylinder. The distributions of the three velocity components, u, v and w, remain 

basically similar to those of the uniform approach flow. In the scour-hole region and 

approaching the cylinder, the u-component moderately increases and is always dominant 

compared to the other components. In the scour-hole region the v-component, which is 

negligible in the plane  = 0° and pronounced in the plane  = 45°, is important but 

diminishing; at r = 10 [cm] this component is of v ≈ –0.11 [m/s] (–0.23U∞) which is 60% 

of that in the plane  = 45°. The w-component, like in the previous planes, manifests 

itself as a downward velocity that gets stronger approaching the cylinder. Close to the 

cylinder, r = 10 [cm], the downward velocity is of w ≈ –0.16 [m/s] (–0.35U∞), which is 

60% of that in the plane  = 0° and is 70% of that in the plane  = 45°. The v and w 

components, demonstrate a weak rotating flow going away from the cylinder at the upper 

layer (v and w are negative) and towards the cylinder at the lower layer (v and w are 

positive). That rotating flow has also a tangential component, which is evidenced by the 

negative u close to the bed, at 18 ≤ r [cm] ≤ 30, coinciding with the positive w. 
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Fig. 2.14a  Vertical distributions of the measured velocities, turbulence intensities, and  

Reynolds stresses in the plane  = 90°. 
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Fig. 2.14b  Cont’d. 
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Fig. 2.14c  Cont’d. 
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Fig. 2.14d  Cont’d. 
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Fig. 2.14e  Cont’d. 
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Turbulence intensities in the plane 90°. In the far region, the turbulence intensity 

distributions resemble the one in the uniform approach flow. In the scour-hole region and 

approaching the cylinder, the distributions keep constant within the upper layer and 

increase within the lower layer. At the upper layer, the u u  is always dominant, 

followed by, successively, the v v  and w w . At the lower layer, however, the 

v v  eventually exceeds the u u  and becomes the most prominent; at r = 10 [cm], the 

values are v v  ≈ 0.15 [m/s] and u u  ≈ 0.09 [m/s]. Compared to the planes  = 0° 

and 45°, the u u  component shows similar tendency, except at r = 10 [cm] where it 

exhibits a decrease. For the other two components, there is a modest increase.

Reynolds stresses in the plane  = 90°. The Reynolds stress in the far region, as in the 

case of the velocity, does not show any noticeable change due to the cylinder. In the 

scour-hole region and approaching the cylinder, the  u w stays more or less constant at 

the upper layer and increases at the lower layer, while the  v w  becomes more 

pronounced. The  u w  at the lower layer shows a sharp turn towards a peak underneath 

z = 0, as also in the case of the planes  = 0 and 45° but with considerably higher values. 

Approaching the cylinder from r = 44 to 22 [cm], this peak increases from  u w  ≈ 0.001 

to 0.004 [m2/s2], but further approaching the cylinder, this peak decreases to 

 u w  ≈ 0.0015 [m2/s2] at r = 10 [cm]. There is a negative  u w -value at 

15 ≤ r [cm] ≤ 26 and close to the bed; this corresponds with the negative u-component 

and the upward w-component previously presented. The  v w  has a distribution in 

alternating negative-positive-negative values with the depth. Closer to the cylinder, the 

negative value becomes dominant and at r = 10 [cm], the  v w  all takes the negative 

value. Compared to the planes  = 0° and 45°, the  v w  is generally higher.

2.5.6 Measurements in the plane  = 135° 

The scour hole in the plane  = 135° extends up to r = 90 [cm] (6D p) with the maximum 

scour depth of ds = 21.3 [cm] (1.4h∞) at the leading edge of the cylinder. Unlike the 

previous planes, there is no single, but a double inclination of the scour hole. The 

measurements at this plane were performed at 10 ≤ r [cm] ≤ 80, from which 16 vertical 

distributions of the velocities, the turbulence intensities, and Reynolds stresses were 

obtained. The data are available in the entire depth (zones A and B) for r ≥ 22 [cm] but 

are only available at z ≤ 5 [cm] (zone B) for r ≤ 18 [cm]. Shown in Fig. 2.15 are the 

measured distributions for 10 ≤ r [cm] ≤ 70; the data at r = 80 [cm] are not shown. 

Velocities in the plane  = 135°. The u-component is always dominant among the other 

components, v and w. Approaching the cylinder, the u-component gradually increases 

and is always positive. At the same time, the v- and w-components get more important 

but remain smaller than the u-component. The v-component is vertically distributed in an 

alternating negative-positive value, but close to the cylinder, it shifts towards the positive 

side. At r = 10 [cm], it is positive along the entire depth of measurement with the 

maximum value of v ≈ 0.15 [m/s] (0.33U∞). The w-component manifests itself as a 

downward velocity, except close to the bed where there is an upward component. The 
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maximum downward flow is w ≈ –0.13 [m/s] (0.29U∞) which is much weaker (about 

50%) than that in the plane  = 0° and is slightly weaker (80%) than that in the plane 

 = 90°. 

Turbulence intensities in the plane  = 135°. The three components of the turbulence 

show an increasing intensity compared to those of the previous planes,  = 0°, 45° and 

90°. The turbulence intensifies closer to the cylinder, notably at the lower layer. At the 

upper layer, it is more or less constant. The three components, the u u , v v , and 

w w , are well organized and their profiles have a similar shape. The u u  and the 

w w  components are the most and the least dominant, respectively, with an exception 

close to the bed where the v v  is comparable to the u u . The u u , notably at the 

lower layer, increases from the maximum value of u u  ≈ 0.065 [m/s] at r = 70 [cm] to 

u u  ≈ 0.12 [m/s] at r = 10 [cm]. The v v  behaves like the u u . It is lower than the 

u u , but close to the bed, the two components become comparable. The w w  is 

always the least important. Approaching the cylinder, it only slightly increases; the 

maximum w w  increases from 0.04 to 0.06 [m/s]. 

Reynolds stresses in the plane  = 135°. The Reynolds stresses in this plane continue to 

increase compared with those in the previous planes; they are about 2.8 times higher than 

those in the plane  = 0°. The Reynolds stresses, both at the upper layer and lower layer, 

increase as they are approaching the cylinder. The  u w  is always positive, whereas the 

 v w  has positive and negative values. The  u w  has a peak at the lower layer whose 

magnitude increases from  u w  = 0.001 [m2/s2] at r = 70 [cm] to  u w  = 0.005 [m2/s2] 

at r = 22 [cm]. As it further approaches the cylinder, the peak slightly diminishes to 

 u w  ≈ 0.004 [m2/s2] at r = 10 [cm]. The  v w  has a negative value at the upper layer, 

a positive value at the lower layer, and tends to a negative value close to the bed. The 

magnitude increases as it approaches the cylinder. At the two profiles closest to the 

cylinder, at r = 12 and 10 [cm], the  v w  has an alternating positive-negative value. 
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Fig. 2.15a  Vertical distributions of the measured velocities, turbulence intensities, and  

Reynolds stresses in the plane  = 135°. 
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Fig. 2.15b  Cont’d. 
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Fig. 2.15c  Cont’d. 
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2.5.7 Measurements in the plane  = 180° 

The scour hole in the downstream of the cylinder ( = 180°) extends far to the 

downstream, r = 105 [cm] (7D p), with the maximum scour depth of ds = 19 [cm] 

(1.3h ); the upward incline of the scour hole is thus  = 11°. Further downstream, up to 

r = 300 [cm] (20D p), the bed continues with a deposition. The ADVP measurements 

were performed at 10 ≤ r [cm] ≤ 100, from which 18 vertical distributions of the 

velocities, the turbulence intensities, and the Reynolds stresses were obtained. The data 

for the region close to the cylinder, r < 22 [cm], are available only at z ≤ 5 [cm], while 

those for the rest, r ≥ 22 [cm], cover almost the entire flow depth. The 18 vertical 

distributions are presented in Fig. 2.16 

The flow in the wake of the cylinder is characterized by the so-called wake vortices that 

are formed by the shear-layers as a result of the flow separation detaching from the 

cylinder surface. At the surface and notably near the cylinder, the vortex is strong, the 

surface considerably fluctuates, and an air entrainment frequently takes place, generating 

air bubbles in the flow. These air bubbles, being of important dimensions, made the 

measurements very difficult by blocking the acoustic signal. This was particularly so in 

the case of measurements in zone A where the air bubbles stick to the mylar film of the 

instrument housing. The positioning of the ADVP-instrument was also difficult due to the 

fluctuating surface. For that reason, some of the measurement data from the zone A 

(z > 5 [cm]) and r ≤ 38 [cm] have to be interpreted with care. 

Velocities in the plane  = 180°. Close and behind the cylinder, r ≤ 38 [cm], the u- and 

w-components indicate a flow reversal towards the water surface. The u-component is 

small close to the cylinder, being u ≈ 0.1 [m/s] (0.22U∞) at r = 10 [cm]. Moving outward 

from the scour hole the u-component increases and the flow reversal diminishes. The u-

component is quasi-uniformly distributed along the depth with the value of u ≈ 0.3 [m/s] 

(0.67U∞) at r = 70 [cm]; further downstream, it is recovering towards a logarithmic 

distribution, nevertheless up to r = 100 [cm], the logarithmic distribution has not been 

completely attained. The w-component is always in the upward direction, which is on the 

contrary to that in the plane  = 0°. Its maximum value is w ≈ 0.16 [m/s] (0.33U∞) at 

r = 10 [cm], which constantly diminishes as the flow leaves the scour hole. The v-

component is usually small; immediately behind the cylinder, however, it has larger 

values of v ≈ 0.04 [m/s] (0.09U∞), which is an indication of three-dimensional flow. 

Turbulence intensities in the plane  = 180°. The intensity of the turbulence at the 

plane  = 180° is considerably strong. Close to the cylinder, the three components show 

magnitudes of approximately u u  ≈ v v  ≈ 0.2 [m/s] and w w  ≈ 0.15 [m/s], which 

are more than twice higher than those at the plane  = 0°. The maximum intensity is 

found at r = 18 [cm], which is unlike the case for the other planes where the maximum is 

found at the measured vertical closest to the cylinder, r = 10 [cm]. As the flow moves 

away from the cylinder, the turbulence intensities decrease. Along the range of the 

measurements, the u u  and v v  are comparable with the one occasionally exceeds 

the other, where as the w w  is always the least dominant. 
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Reynolds stresses in the plane  = 180°. There is little that can be deduced from the 

Reynolds stress data in this plane. The data do not give any conclusive trend. 

Nevertheless, at 26 ≥ r  ≥ 10 one may notice that the  u w  and  v w  components are 

comparable with the  v w  component; the latter occasionally exceeds the  u w . Their 

distributions have a positive peak underneath z = 0, ranging from 0.003 to 0.004 [m2/s2]. 

Near the solid boundary of the scour hole, the stresses have the tendency to diminish 

towards zero. 

 

 

Fig. 2.16a  Vertical distributions of the measured velocities, turbulence intensities, and  

Reynolds stresses in the plane  = 180°. 
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Fig. 2.16b  Cont’d. 
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Fig. 2.16c  Cont’d. 
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Fig. 2.16d  Cont’d. 
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2.6 Summary and conclusions 

Presented in this chapter are the measured data of the three-dimensional flow fields 

around a vertical cylinder, installed in an established (equilibrium) scour depth, under a 

clear-water regime. The acoustic-Doppler velocity profiler (ADVP) was used to measure 

instantaneously the vertical distributions of the three velocity components in vertical 

planes around the cylinder. The ADVP, conceived and developed at LRH, is a non-

intrusive instrument, capable of measuring the three components of the instantaneous 

velocity in a number of points (in a 3 to 5 [mm] interval) over a vertical. The measured 

flow field is presented as the vertical distributions of the (time-averaged) velocities, the 

turbulence intensities, and the Reynolds shear-stresses in the planes  = 0°, 45°, 90°, 

135°, and 180°. Presented also are the vertical distributions for the uniform approach 

flow, i.e. the flow without the cylinder being installed. 

The measurement in the approach flow, without the cylinder being installed, reveals that 

the approach flow is uniform, with a slight tendency of being a decelerated one, and is 

hydraulically (incomplete) rough. The vertical distribution of its longitudinal velocity 

component, u z , can be well explained by the logarithmic law-of-the-wall for the inner 

region, z h  0.2 , and by the Coles law-of-the-wake for the entire depth. The vertical 

distributions of the longitudinal component of the turbulence intensities can be 

satisfactorily presented by the semi-empirical expression in the form of 

u u u  Du exp Cu z h  (see Nezu and Nakagawa, 1993). A similar expression, with 

slightly different values of the constants D and C, describes the transverse component. 

The vertical component of the turbulence intensities, however, cannot be satisfactorily 

described by that type of expression. The vertical distribution of the Reynolds shear-

stresses shows a linear distribution as expected, being zero at the water surface and 

increasing towards the bed. The profiles, however, indicates diminishing values in the 

inner layer, z ≤ 0.2h. 

The velocity measurements, with the cylinder in the scour hole, have confirmed the 

complex picture of the three-dimensional pattern of flow around a cylinder. The flow in 

the plane  = 0°, being the plane of symmetry (confirmed by negligible v-component 

except close to the cylinder and the bed where a weak transverse velocity is detected), is 

characterized by a flow circulation and a strong downward flow at region close to the 

cylinder. Towards the downstream planes,  = 45°, 90° and 135°, the flow circulation 

remains, but with a diminishing strength. Similarly, the downward flow close to the 

cylinder also remains and shows a decreasing intensity. Downstream of the cylinder, in 

the plane  = 180°, there is a flow reversal towards the cylinder close to the surface. The 

v-component, as in the plane  = 0°, is always negligible except at regions close to the 

cylinder and to the bed where small values are detected. As the flow moves downstream, 

leaving the scour hole, the flow reversal diminishes and the flow is recovering to the 

approach flow condition. In all planes the measurements show that the flow in the far 

region, beyond the scour-hole circumference, does not change with the presence of the 

cylinder. The flow is practically altered only in the scour-hole region. 
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As the flow advances to the downstream passing the scour hole, the intensity of the 

turbulence gets stronger. The increase of the turbulence level is notably noticeable from 

the plane  = 90° to  = 135°. This increase continues, but with diminishing rate, in the 

plane  = 180°. In this downstream plane, the turbulence demonstrates its peak intensity. 

It is interesting to observe that, in this plane, the three components of the intensity, 

u u , v v  and w w , indicate a tendency of being isotropic. Observing the intensity 

of the turbulence in each plane, one can notice that, approaching the cylinder, the 

turbulence inside the scour hole intensifies. In the upper layer, on the other hand, the 

turbulence level remains more or less constant. 

Approaching the cylinder, in all planes except in the plane  = 180°, the turbulence 

intensifies within the scour hole, z < 0, but remains more or less unchanged outside the 

scour hole, z > 0. Downstream of the cylinder, in the plane  = 180°, the turbulence gets 

its strongest intensities.

The Reynolds shear-stresses inside the scour hole gets increasingly stronger as the flow 

moves towards downstream from the plane  = 0° to  = 135°. In the plane  = 135°, the 

stresses are about 3 times higher than those in the plane  = 0°. In the upper layers, z > 0, 

the profiles of the Reynolds stresses exhibit a nearly linear distribution. Underneath, 

z ≤ 0, the profiles of the Reynolds stresses turn towards a strong peak. In all planes, the 

 u w  is always dominant compared to the  v w . Downstream of the cylinder, 

 = 180°, the vertical distributions of the Reynolds stresses do not show any conclusive 

trend.
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Notations 

 

A, B, C  measurement zones. 

BR  constant of integration of the logarithmic law-of-the-wall. 

Cu,Cv,Cw, coefficients in the semi-empirical relation of the turbulence 

Du, Dv,Dw  intensity. 

D p [cm] diameter of the cylinder. 

NV  number of the measured instantaneous-velocity data. 

NPP  number of the pulse pairs. 

P(r,,z)  measurement section. 

PRF [Hz] frequency of the pulse emission. 

Q [m3/s] discharge. 

Re  Reynolds number. 

So  channel bed slope. 

Tacq [s] duration of the velocity data acquisition. 

Tg [s] time gate of the velocity data acquisition. 

T1

,T1


,T2


, T2


,T3 ADVP transducers. 

V,V  [m/s] velocity. 

ˆ V , ˆ V  [m/s] instantaneous velocity. 

ˆ V h , ˆ V h  [m/s] instantaneous horizontal velocity component. 

cs [m/s] acoustic wave speed in water. 

d50  [mm] mean diameter of the sediment. 

d s [m] equilibrium (maximum) scour depth. 

fD [Hz] Doppler frequency. 

fV [Hz] frequency of the velocity data acquisition. 

h, h  [m] flow depth, flow depth of the approach flow. 

ks [mm] equivalent (standard) uniform roughness. 

r [m] radial direction. 

u  [m/s] friction velocity. 

u r  [m/s] radial velocity component. 

u  [m/s] tangential (angular) velocity component. 

u,v,w [m] time average velocity components. 

ˆ u , ˆ v , ˆ w  [m/s] instantaneous velocity components. 
ˆ u 1, ˆ v 1, ˆ w 1 [m/s] instantaneous velocity components along the tristatic plane 1. 
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x,y,z [m] longitudinal, transversal, and vertical directions. 

 [°] angular direction. 

D  [°] Doppler angle. 

T  [°] angle of the tristatic plane. 

V  [°] direction of the instantaneous velocity vector. 

  Karman constant.

  wake-strength parameter.

 [°] scour bed inclination.

 [°] angular direction of the cylindrical coordinate.

 [kg/m3] water density. 

g  uniformity index of the sediment. 

o [N/m2] shear stress, bed shear stress. 
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3 Elaboration of the measured Flow 

Abstract 

The measured three-dimensional flow field in an equilibrium scour hole presented in the 

preceding chapter (see Chapter 2) is here further investigated. The analyses are focused 

on the alteration of the flow structure due to the combined effect of the cylinder and the 

scour hole. Spatial distributions of the time-averaged velocities, of the vorticities, of the 

turbulence intensities, and of the Reynolds stresses in vertical planes around the cylinder 

are investigated. The measured velocity data show that a three-dimensional flow 

establishes itself, being characterized by notably a rotating flow inside the scour hole 

upstream of the cylinder and a downward flow in the upstream close vicinity of the 

cylinder. This is know as the horseshoe vortex. This structure disappears behind the 

cylinder, and a flow reversal towards the water surface is observed. The intensity of the 

turbulence increases considerably inside the scour hole, and particularly close to the 

cylinder. The turbulent kinetic energy increases on entering the scour hole, on 

approaching the cylinder, and on moving towards downstream regions. Its profiles are 

characterized by bulges below the original bed level. A similar observation can be made 

on the Reynolds stresses. Estimates on the bed shear-stresses along the plane of 

symmetry disclose a diminishing value of the bed shear-stresses upon entering the scour 

hole and approaching the cylinder. Moving downstream and leaving the scour hole, the 

bed shear-stresses are recovering towards their value in the approach flow. 

Résumé 

Le champ des vitesses tridimensionnelles mesuré dans une fosse autour d’un cylindre 

vertical présenté auparavant (voir Chapitre 2) est ici étudié plus en détail. Le but de cette 

étude est de connaître l’effet apporté par la fosse et le cylindre au changement de 

l’écoulement. L’analyse se fait par des répartitions spatiales de vitesses (moyennées dans 

le temps), vorticité, intensité des turbulences et des tensions de Reynolds dans différents 

plans verticaux autour du cylindre. L’analyse des vitesses montre que l’écoulement est 

tridimensionnel et caractérisé notamment par un tourbillon dans les plans amont et par le 

courant vers le bas qui se trouve à proximité du cylindre. Ce system est appelé le vortex 

de fer-à-cheval. Il se propage vers l’aval et son intensité devient faible voire presque 

invisible. Derrière le cylindre, un autre courant de retour est observé alors que celui près 

de la surface se dirige vers le cylindre. La turbulence s’amplifie dans la fosse et 

notamment dans la proximité du cylindre. L’énergie cinétique de turbulence croît en 
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entrant dans la fosse en s’approchant le cylindre ; sa valeur aux régions de sillage est très 

élevée. Les profils de l’énergie cinétique turbulente sont caractérisés par des pics qui se 

trouvent au dessous de la ligne du fond original. Les tensions de Reynolds augmentent de 

la même façon. L’estimation de la valeur de cisaillement au fond, à partir des donnée des 

vitesses et des tensions de Reynolds, met en évidence sa décroissance due à la fosse et au 

cylindre. 
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3.1 Introduction 

Presented in the previous chapter are the velocity fields measured in five vertical planes 

radiating from the cylinder,  = 0°, 45°, 90°, 135°, and 180°. Brief discussions on the 

velocities, turbulence intensities, and Reynolds stresses were given following the 

presentation of the measurements in each plane. Detailed discussions are presented in this 

chapter where more emphasize is put rather on the (time-averaged) velocity. Most of the 

discussions are associated with the flow pattern in radial planes around the cylinder. A 

comparison with other relevant data in the available literature is also presented. 

3.2 (Time-averaged) velocity fields 

Vertical distributions of measured (time-averaged) velocities in planes around the 

cylinder have been presented in Chapter 2. It has been shown that the flow outside the 

scour hole is not altered by the presence of the cylinder. The vertical distribution of the 

velocity outside the scour hole is very much similar to the one of the undisturbed flow. In 

the scour hole region, notably in the upper layer, z > 0, the effect of the cylinder is 

noticealbe in a region that is relatively close to the cylinder, r Dp 1.3. In the lower 

layer, z < 0, and notably in the upstream planes,  ≤ 90°, the flow is characterized by a 

rotating flow and a downward flow, better known as the horseshoe vortex. This vortex is 

a result of interaction among the incoming flow, the scour hole, and the cylinder. 

It has also been presented that the velocity field is dominated by the u component in all 

measurement planes. Only very close to the cylinder the u component is exceeded by the 

vertical velocity. The w-velocity component manifests itself as a downward flow that 

reaches its strongest magnitude at the circumference of the cylinder. This downward flow 

gets weaker along the angular distance,  > 0°, and becomes upward flow in the rear of 

the cylinder,  = 180°. In the upstream planes,  ≤ 90°, it is through this downward flow 

that the incoming flow-momentum is transferred into the scour hole. The behavior of the 

downward flow in the upstream planes,  ≤ 90°, notably close to the cylinder, 

r = 10 [cm], will be further investigated (see Sect. 3.2.4).

The dominance of the u-velocity component over the v component over all planes, 

notably in the upstream planes,  ≤ 90°, is an interesting phenomenon. Measurements on 

a flat channel bed (see Graf and Yulistiyanto, 1998) show that in the plane  = 45° close 

to the cylinder, the u- and v-velocity components are comparable, indicating that the flow 

is directed tangentially with respect to the cylinder. This is not the case in the present 

measurements where the v component is persistently less pronounced. The dominant u-

velocity component suggests that the incoming flow be directed straightforwardly to the 

downstream. This is most likely due to either the attraction of the scour hole to pull the 

flow or the momentum of the incoming flow. The incoming flow-momentum is strong 

enough to overcome any flow alteration by the cylinder. The spatial evolution of the v-

velocity component will be discussed in Sect. 3.2.3. 
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3.2.1 Vertical distribution of the velocity 

Shown in Fig. 5.1 are some selected velocity profiles, u(z), v(z), and w(z), measured in 

the planes  = 0°, 45°, 90°, 135°, and 180°. Indicated also in the figure are the 

normalized axes, u U  and z h , where U∞ = 0.45 [m/s] and h∞ = 18 [cm] are the cross 

sectional velocity and flow depth of the (far-field) approach flow. Observing individually 

the three velocity components in each plane, the following is to be remarked: 

 In the plane  = 0°, approaching the cylinder. The u component hardly changes its 

magnitude until r = 42 [cm], slightly decreases until r = 30 [cm], and progressively 

diminishes over the entire flow depth closer to the cylinder. Noticeable is the negative 

u-component at the lower layer of r ≤ 30 [cm], indicating a reversed flow. The v 

component is practically negligible in all measured profiles, showing that the flow is 

practically symmetrical about the center line. The w component considerably grows 

into a downward flow (negative values) with a maximum value of w U 0.6 close 

to the cylinder. A similar magnitude of downward velocity was reported by Melville 

(see Melville and Raudkivi, 1977). In the flat channel bed measurement, however, a 

lower downward peak was obtained, w U 0.3 (see Graf and Yulistiyanto, 1998).

 In the plane  = 45°, approaching the cylinder. The u component slightly decreases in 

the upper layer, but progressively increases in the lower layer; negative u-component 

is observed close to the bed, but with a lower intensity than that in the plane  = 0°. 

The v component remains nearly constant until r = 30 [cm], and afterwards shows 

decreasing positive values in the lower layer, v U  0.1, and increasing negative 

values in the upper layer, v U  0.4 . The w component exhibits a similar pattern 

as that in the plane  = 0° where an increasing downward flow is observed, but with a 

slightly lower intensity. A maximum downward flow of w U 0.5 was measured 

close to the cylinder. 

 In the plane  = 90°, approaching the cylinder. The u component moderately grows, 

notably after r ≤ 30 [cm]; a weak negative velocity is observed close to the bed. The v 

component is small in r > 30 [cm], shows afterwards increasing negative values (the 

flow is away from the cylinder) in the upper layer and increasing positive values (the 

flow is towards the cylinder) in the lower layer. An important v component is 

observed close to the bed and next to the cylinder. The w component always exhibits 

an increasing downward flow, but in a smaller intensity than that in the planes  = 0° 

and 45°, being w U 0.35. The w(z) profiles show concave distribution with zero 

values at the bed and surface. This is unlike in the flat channel bed measurement 

where the w velocity is maximum near the surface and is decreasing towards zero at 

the bed (see Graf and Yulistiyanto, 1998). The concave w(z) profiles are also 

observed in the previous planes ( = 0° and 45°). 
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Fig. 3.1  Measured velocity profiles, u(z), v(z), w(z), around the cylinder. 
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Fig. 3.1  Cont’d. 

 

 In the plane  = 135°, leaving the cylinder. The u component diminishes over the 

entire depth, but has always positive values. The v component remains negligible in 

the upper layer, but decreases in the lower layer where it becomes negative for 

r > 22 [cm]. The w component exhibits a rather weaker downward flow than in the 

previous planes, being w U 0.3. This component looses its strength and 

becomes negligible for r > 70 [cm]. 

 In the plane  = 180°, leaving the cylinder. The u component shows a flow reversal 

towards the surface, its profile shows a recovery towards the one of uniform flow. 

The v component is generally small, but is rather noticeable, v U  0.1, close to 

the cylinder. The w component is, contrary to that in the other planes, always directed 

upward and diminishing. 
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3.2.2 Flow pattern around the cylinder 

A further investigation on the flow field can be made by presenting the measured velocity 

data in vector plots as depicted in Fig. 3.2. The plots, however, offer only a 2D picture of 

the flow field. In order to obtain a better observation on the flow structure around the 

cylinder, isoline contours of the velocity magnitude in different planes are plotted in Fig. 

3.3. The velocity magnitude is normalized by the velocity of the approach flow, V U , 

where V  u
2
 v

2
w

2
 and U  0.45 [m s]. This can be interpreted as the flow 

intensity. These two figures together give a clear idea about the flow pattern around the 

cylinder. In the following paragraphs, the flow pattern around the cylinder is discussed, 

firstly for the plane of symmetry upstream of the cylinder ( = 0°) and secondly for the 

other planes ( = 45°, 90°, 135°, and 180°). 

Flow in the plane  = 0°

 The (far-field) approach flow, being essentially uni-directional, undergoes a 

separation upon encountering the sloping bed of the scour hole (see Fig. 3.2a).  This 

process is similar to that of flow over a back-facing step (see Nakagawa and Nezu, 

1987), except that the separation does not take place immediately at the tip of the bed 

change but at a point further downstream. By visual observation, the separation starts 

approximately at 5 [cm] after the sloping bed starts. Underneath the separation line, a 

weak clockwise rotating flow forms itself.  

 Above the separation line, the flow is decelerating notably in the region r > 30 [cm]. 

Within a short distance 20 ≥ r [cm] ≥ 14, the flow intensity decreases from 

V U   0.8 to 0.6 (see Fig. 3.3a). This decelerating flow is associated with a reverse 

pressure gradient created by the cylinder, which develops into a stagnation pressure at 

the cylinder face. In the vertical direction, the (dynamic) pressure diminishes with 

increasing depth (decreasing z). Consequently, the flow is down-deflected that 

becomes more pronounced approaching the cylinder. A strong downward flow 

develops along the cylinder face. 

 The downward flow gets stronger with increasing depth, reaches a peak value of 

w U  0.6  (Fig. 3.1) somewhere below the original bed level (Sect. 3.2.4 will 

discuss further the distribution of the maximum downward velocity). Below the peak, 

the (downward) flow looses its intensity from V U   0.6 to 0.2 (see Fig. 3.3a) when 

it encounters the separation zone and interacts with the rotating flow already exists 

there. The downward flow enhances the rotating flow and, conversely, the rotating 

flow attenuates the downward flow. At the bed, the flow is reversed back towards 

upstream by the cylinder and the bed; this further strengthening the rotating flow. 

This system of rotating and downward flows, which continues to exist as one follows 

the angular direction around the cylinder, is better known as the horseshoe vortex. 
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Fig. 3.2  Measured velocity fields in vertical planes, V ur,w , around the cylinder. 
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Fig. 3.2   Cont’d. 
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Fig. 3.3  Contours of the measured flow intensity, V U , where V  u
2
 v

2
w

2
 and 

U  0.45 [m s]. 
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Flow in the plane  = 45° and 90° 

 In the plane  = 45°, a similar observation as in the previous plane ( = 0°) can be 

made, notably on the downward flow close to the cylinder and the rotating flow 

inside the scour hole, the horseshoe vortex, (see Fig. 3.2b). The velocity contour plot 

(see Fig. 3.3b), however, indicates a diminishing flow intensity compared to the one 

in the plane  = 0°. Similarly, the downward velocity along the cylinder face is also 

less pronounced as has been shown previously (see Fig. 3.1). In the context of the 

horseshoe vortex, it can be concluded that this vortex is diminishing. 

 In the plane  = 90°, the radial velocity components are very weak (see Fig. 3.2c). 

The flow intensity (see Fig. 3.3c), on the other hand, is high and comparable with the 

one in the plane  = 45°. This shows that much of the flow is dominated by the 

downstream velocity components, u  ur  (u  u , ur  v), as has also been 

evidenced in the velocity profiles discussed in the previous section (see Sect. 3.2.1, 

Fig. 3.1). Close to the cylinder (Fig. 3.3c), nevertheless, there is a noticeable radial 

velocity component, showing a flow direction away from the cylinder in the upper 

layer, z > 0, and vice versa in the lower layer, z ≤ 0. The horseshoe vortex is 

practically not detected in this plane. 

Flow in the plane  = 135° and 180°

 In the downstream planes ( = 135° and 180°), the flow is directed away from the 

cylinder (see Fig. 3.2d,e). The downward flow is weak in the plane  = 135° and is 

no longer noticeable in the plane  = 180°. Behind the cylinder, a wake flow, 

characterized by a flow reversal towards the surface, takes over. Leaving the scour 

hole, the flow is recovering into a unidirectional one; at r = 100 [cm] it has not, 

however, entirely reached the (far-field) approach flow condition. 

3.2.3 Transverse velocity 

The alteration of the flow pattern due to the cylinder and the scour hole can also be 

investigated by looking into the directional change (deviation) of the flow with respect to 

the far-field approach flow. The vertical flow deviation can be readily illustrated by the 

vertical velocity component; this will be discussed in the next section. The horizontal 

flow deviation could be manifested by the skewed velocity profiles; this was 

experimentally investigated, for example, by Ahmed and Rajaratnam (1997). From the 

measured data obtained outside the scour hole, they defined the skewed profiles by 

making use of the normal (cross flow) velocity component and the streamwise velocity at 

the surface. In the present work, since the surface velocity is not measured, the transverse 

velocity component, v, is chosen as a measure of the horizontal deviation of the flow with 

respect to the main direction of the far-field approach flow. It has been shown in the 

preceding sections that the v component is always less prominent than the u component, 

meaning that the flow deviation (in the horizontal direction) is low. The evolution of the 

v-velocity component around the cylinder is here investigated, whereas that of the w 

component will be discussed in the following section. 
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The spatial evolution of the v-velocity component in the planes  = 45°, 90°, and 135°, is 

displayed in Fig. 3.4. Shown on the left are the scalar values of the v velocity, normalized 

by the velocity in the approach flow, v U . Shown on the right are the direction (in 

degrees) of the local velocity vector, Vh u,v , with respect to the plane of symmetry, 

such as   arctan v u  with –90 ≤  [°] ≤ 90. The negative values (indicated by the 

dashed contour lines) denote flow being deflected away from the plane of symmetry. 

 In the plane  = 45°, outside the scour hole the v-velocity component remains 

negligible, implying that the flow is unaltered either by the cylinder or the scour hole. 

Beginning at r = 35 [cm], it starts to show negative values (the flow deviates away 

from the plane of symmetry) and vice versa inside the scour hole. Approaching the 

cylinder, the negative deviation grows stronger in magnitude, v U  ≈ 0.35, in 

direction,  ≈ –20 [°], and in area, z ≥ –11 [cm] (see Fig. 3.4a,b). Inside the scour 

hole, a weak flow, v U  ≈ 0.1 to 0.15, deviates strongly,  ≈ 80 [°], towards the 

plane of symmetry. 

 In the plane  = 90°, a weak flow deviation, v U ≈ ±0.1, is observed away from the 

cylinder at the upper layer, z > 0, and towards the cylinder inside the scour hole (see 

Fig. 3.4c,d). A small area, confined near the bed, of negative deviation is noticed. In 

the rest of the scour hole, r > 30 [cm], the flow is not deviated at all. Compared to the 

measurements on the flat channel bed (Yulistiyanto, 1997), this flow deviation is 

much less pronounced; the scour hole hinders the cylinder-induced deviating flow 

from developing. 

 In the plane  = 135°, a weak flow deviation is observed; although the maximum 

value is v U  ≈ 0.2, but it is largely around v U  ≈ 0.1. The deviation here is very 

much similar to that in the plane  = 90°. 

From the above observation on the transverse velocity component, it can be concluded 

that influence of the cylinder and the scour hole in deviating horizontally the approach 

flow is limited inside the scour hole and close to the cylinder. Outside the scour hole, the 

horizontal flow-direction remains the same as that of the far-field approach flow. This is 

supported further by the vector plots of the horizontal velocity, Vh u,v , around the 

cylinder at different elevations z depicted in Fig. 3.5. 

Fig. 3.5 also reveals the horizontal component of a rotating flow inside the scour hole; at 

z = –10 [cm] a clockwise rotating flow is noticeable on the side of the cylinder, 

0° <  ≤ 105°, with a weaker counter-clockwise one next to it (see Fig. 3.5c). Deeper 

inside the scour hole, z = –15 [cm], this structure remains but has become very weak (see 

Fig. 3.5d). Downstream,  > 90°, and close to the cylinder, the flow is accelerated and 

directed towards the wake behind the cylinder (see Fig. 3.5c,d). Immediately behind the 

cylinder, the flow meets the one coming from the other side of the symmetry plane; both 

together form an upward flow.



– 3.13 – 

 

Fig. 3.4  Contours of the measured transverse velocity, v U , (on the left) and 

 of the angles formed by the transverse velocity and the longitudinal velocity, 

arctan v u  in degrees, (on the right) 
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Fig. 3.5  Measured horizontal velocity vectors, Vh u,v , at different elevations z. 

 

 

 

 

 

 



– 3.15 – 

3.2.4 Vertical velocity (downward flow) 

The vertical velocity component manifests itself as a downward flow, notably in the 

upstream planes close to the cylinder. The downward flow along the cylinder face is 

driven by the pressure gradient in the vertical (z) and angular () directions. It is one of 

the important signatures of the flow around the cylinder; together with the reversed flow, 

they are usually referred to as the horseshoe vortex. 

It has been previously shown (see Fig. 3.1) that the downward velocity has its maximum 

value near the cylinder (at the cylinder face). The variation of this downward velocity 

along the cylinder face (at r = 10 [cm]) observed in the upstream planes ( ≤ 90°), is 

shown Fig. 3.6a. The data are normalized by the maximum value, wm, attained in the 

corresponding plane. Note that the data from the additional measurements in the planes 

 = 15°, 30°, 60°, and 75° (see Chapter 2) have been included in the figure. It is 

interesting to see that the maximum values in all planes fall at 40% of the local depth 

measured from the bed, z  zbed  h  0.4. Their profile, notably below the maximum 

value, falls in a narrow band, showing a near similarity. 

A different result was reported by Dey et al. (1995), who found that the maximum 

downward flow was at the original bed level, z ≈ 0, irrespective of the plane .

In the case of flat channel bed (see Graf and Yulistiyanto, 1998), a somewhat different 

result was reported. In the plane  = 0° the downward velocity is increasing with depth, 

in the plane  = 45° it is almost uniformly distributed over the depth, and in the plane 

 = 90° it is diminishing with depth. The downward flow peak, in the plane  = 0, is 

found at z/h = 0.15, which is much closer to the bed than what is observed in the present 

case with scoured channel bed. This is due partly to the lower depth (less friction loss by 

the cylinder) and, to a lesser extent, to the smaller separation zone. Consequently, the 

horseshoe vortex in the flat channel bed case is squeezed to the bottom corner of the 

cylinder. 

A similar observation was reported by Ahmed and Rajaratnam (1998). The maximum 

downward flow is attained near or at the bed in the absence of scour hole, and below the 

original bed level in the presence of a scour hole. 

Fig. 3.6b depicts the distribution of the maximum downward velocity in the radial 

direction for  ≤ 90°. Plotted in the figure are the maximum values of downward velocity 

attained at any particular distance, denoted by ˜ w m , which are normalized by the largest 

of these values, wm. What is interesting here is that the profiles fall in a narrow band, 

notably for r Dp 1.8  where a similarity can be observed. Regression through all data 

points yields an exponential relation: 

˜ w m wm  2.9683 exp 1.6736 r Dp   (3.1) 
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which is indicated by the solid line in Fig. 3.6b. The figure confirms also that the 

maximum downward velocity is observed at the cylinder face (at r = 10 [cm] or 

r Dp  0.67 as the available data closest to the cylinder). This maximum downward 

velocity diminishes with angular distance around the cylinder, from w U  = –0.6 at 

 = 0° to w U  = –0.3 at  = 135°, and becomes upward velocity, w U  = 0.35 at 

 = 180°, as displayed in Fig. 3.6c. The figure shows also the angular variation of the 

downward velocity at the original bed level, z = 0 [cm]; it varies in a similar manner as 

the maximum value, from w U  ≈ –0.4 in  = 0° to w U  ≈ –0.2 at  = 135°, and 

w U  = 0.25 in  = 180°. 

 

 

Fig. 3.6  Measured downward velocity around the cylinder: (a) vertical distribution along 

the cylinder face (r = 10 [cm]) in different planes, (b) radial distribution of the maximum 

values in different planes, and (c) angular distribution of the maximum values and of 

the values at the original bed level, z = 0. 

 

 

The fact that the vertical velocity component has largely negative values, except in the 

plane  = 180°, suggests that the scour hole attracts the flow. Inside the scour hole, the 
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flow may undergo a rotating mechanism; the rotation yet takes place and remains inside 

the scour hole. It seems that the flow out of the scour hole exits through the wake behind 

the cylinder, where the w component has positive values. 

Fig. 3.7 shows the velocity vectors V u,w  along vertical planes around the cylinder at 

a fixed radial distance from the cylinder, r = 10, 16, 22, and 30 [cm]. This figure clearly 

shows that the flow is deflected towards the bed due to the attraction of the scour hole to 

pull the flow; this holds even in the plane  = 135°, which is near the wake region. The 

rotating flow, which is seen from the velocity vectors in Fig. 3.2, has an angular 

component notably at a distance of r = 22 [cm] as seen from Fig. 3.7c. At this distance 

and behind the cylinder, transverse components can be seen, indicating a weak 3D flow. 
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Fig. 3.7  Measured velocity fields in vertical planes at a constant distance r from the 

cylinder, V u,w . 
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Fig. 3.7  Cont’d. 
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3.2.5 Vorticity fields 

The data of the velocity fields (see Fig. 3.1 and Fig. 3.2) can readily be used to generate 

the vorticity contours; this is shown in Fig. 3.8, where only the region of significant 

vorticity, z ≤ 2 [cm], is displayed. The vorticity in a vertical plane, , is computed by: 

 
u

z

w


 (3.2) 

where  is the x-axis rotated by  and u the corresponding velocity component. The 

transformation of the Cartesian coordinate axes and velocities is obtained by: 

  x cos ysin  and u  ucos  vsin . The central finite-difference technique 

was applied to the velocity data from all measuring stations in each plane. The following 

is to be observed: 

 In the plane  = 0°, a strong positive vorticity is seen at the upstream edge of the 

scour hole, which is due to a change in the bed slope; this is possibly related to the 

start of a separating flow (Fig. 3.8a). Similarly, a countour line of  = 5 [m-1], which 

extends towards the cylinder bottom corner, is most likely related to the separation 

line. A weak negative vorticity is observed at  = –35 [cm]. Another strong positive 

vorticity is created in the downstream edge of the scour hole,  = –10 [cm], caused by 

the adverse pressure gradient due to the flow obstruction of the cylinder. This positive 

vorticity is accompanied by another strong (negative) vorticity underneath. In the 

remaining part of the scour-hole, the vorticity is rather weak, being of the same order 

as the vorticity in the approach flow. Behind the cylinder, the positive vorticity seen 

at the vicinity of the bed is probably due to the boundary-layer flow. The negative 

vorticity in the upper layer is related to the rotating flow as seen in the velocity fields; 

this disappears when the flow moves away from the cylinder and out of the scour 

hole. 

 In the plane  = 45°, a rather similar picture as in the plane  = 0° is observed; a 

strong positive vorticity is created on entering the scour hole, subsequently a weak 

negative one is seen at  = –35 [cm]. Another strong positive one is found at the 

bottom corner close to the cylinder; unlike in the previous plane, however, the 

accompanying negative vorticity underneath is weak. Immediately behind the 

cylinder, a rather weak negative vorticity is displayed at the bed and upper layer. A 

boundary-flow positive vorticity is seen at the vicinity of the bed. In the remaining 

part of the scour hole, none of important activity can be observed. 

 In the plane  = 90°, a positive vorticity, but weak, is also observed on the brink of 

the cylinder. A positive and negative vorticities at the bottom corner of the cylinder is 

also detected, but with a much weaker strength than that in the other planes. In the 

remaining part, a weak negative vorticity is observed. 
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A similar observation, in the plane of symmetry upstream and downstream of the 

cylinder, was reported by Kobayashi et al., (1997). 

 

 

Fig. 3.8  Contours of the vorticity fields in vertical planes around the cylinder. 

Shaded area and dashed lines indicate negative vorticities. 
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3.3 Turbulence characteristics around the cylinder 

3.3.1 Vertical distributions of the turbulence stresses 

The results obtained from the turbulence measurements are shown in Fig. 3.9 for some 

selected profiles in the planes  = 0°, 45°, 90°, 135°, and 180°. The shear velocity in the 

far-field approach flow, u,  0.0265  [m s], is used to normalize the data. The 

following is to be observed: 

 In the plane  = 0° and outside the scour hole, z > 0, the profiles of the turbulence 

intensities and the Reynolds stresses reasonably collapse, showing no significant 

change from the profiles in the far field approach flow. Inside the scour hole, z ≤ 0, 

there is an increase of turbulence intensities and shear stresses approaching the 

cylinder. Near the scour bed, the longitudinal component of the Reynolds stress, 

 u w , has negative values; this is in agreement with the reversed flow observed in 

that region. In the entire region, the longitudinal components of the turbulence 

intensities, u u , and of the Reynolds stresses,  u w , are the dominant ones; this 

holds over the entire flow depth. 

 In the plane  = 45°, a similar observation as in the plane  = 0° can be made, with 

the exception that the transverse component of the turbulence intensities, v v , and 

of the Reynolds stresses,  v w , have values close to the longitudinal ones. 

 In the plane  = 90°, the longitudinal turbulence intensities, u u , slightly decrease 

from the ones in the previous two planes, but the transverse components, v v , 

increase. On the other hand, the longitudinal Reynolds stresses,  u w , show 

significant activities, notably inside the scour hole; distinguishable are the bulges of 

 u w  beneath z = 0, moving downwards with decreasing values as they approach the 

cylinder. 

 In the downstream planes,  = 135° and 180°, the turbulence is strong and rather 

isotropic, notably in the wake region behind the cylinder. It shows that the wake flow, 

being known to be 3D one, fluctuates about its mean value without directional 

preferences. The Reynolds stresses inside the scour hole in the plane  = 135° are 

quite strong, as much as twice or more of those in the upstream planes. The transverse 

stresses,  v w , are also strong; their profiles display positive and negative values 

along the flow depth, indicating a transverse momentum exchange. Behind the 

cylinder in the plane  = 180°, the Reynolds stresses are strong but demonstrate a 

chaotic picture. The flow itself is also chaotic and thus the interpretation of the 

measured data is rather difficult. 

Unfortunately —to the best of our knowledge— no research is available for comparison. 

Studying a backward-facing step (Etheridge and Kemp, 1978, p. 555; and Nakagawa and 

Nezu, 1987, p. 70) showed rather similar trends. 
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Fig. 3.9   Measured turbulence intensities and Reynolds stresses in radial planes around 

the cylinder. 
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Fig. 3.9   Cont’d. 

 

3.3.2 Turbulent kinetic energy 

From the data of the turbulence intensities (see Fig. 3.9), the turbulent kinetic energy of 

the flow, k, defined as: 

k  1
2 u u  v v  w w   (3.3) 

can be computed and is presented in Fig. 3.10 and Fig. 3.11. In the first figure, the data 

values are normalized by using the shear velocity of the approach flow, 

u,  = 0.0265 [m/s]. In the second figure, the total kinetic energy, K + k, where K is the 

kinetic energy of the mean flow, defined as: 

K  1
2 u

2
 v

2
w

2  (3.4) 

is used to normalize the values of the turbulent kinetic energy. 
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The following is to be observed: 

 In the plane  = 0° and approaching the cylinder, there is an increase in the turbulent 

kinetic energy over the entire scour hole. A distinguishable feature is the pronounced 

bulges immediately below the original bed level whose intensity and form enlarge 

approaching the cylinder (see Fig. 3.10a). The bulges, ranging between k u,
2  ≈ 7 

to 45, correspond to the isoline of 0.1(K+k) turbulent kinetic energy (see Fig. 3.11a), 

which delimitates the region of high turbulent energy inside the scour hole (as high as 

90% of the total kinetic energy) from the one of low level turbulent outside the scour 

hole. The maximum value of the turbulent kinetic energy is found at the bottom 

corner of the cylinder where the strong reversed flow (see Fig. 3.2) and the vorticity 

peak (see Fig. 3.8) are observed. 

 In the plane  = 45°, the same as in the plane  = 0° is observed, but a slightly lower 

turbulent energy peak at the bottom corner of the cylinder. 

 In the plane  = 90°, the high turbulent kinetic energy is almost in the entire scour 

hole; the bulges seen in the preceding planes are here nearly extended (see Fig. 3.10c) 

with a maximum value of k u,
2  ≈ 40. The kinetic energy inside the scour hole, as 

in the planes  = 0° and 45°, is largely due to the turbulence; it peaks at 90% of the 

total kinetic energy in the lower part of the scour hole at r ≤ 20 [cm] (see Fig. 3.11c). 

 In the plane  = 135°, the trend seen in the plane  = 90° continues; moving away 

from the cylinder, the bulges in the kinetic energy profiles diminish. 

 In the plane  = 180°, there is a significant increase in the turbulent kinetic energy; 

this is observed in the entire flow depth. At the vicinity of the cylinder, a peak value 

of k u,
2  ≈ 45 is measured until r = 20 [cm]. Leaving the cylinder and the scour 

hole, the turbulent kinetic energy gradually reduces (see Fig. 3.10e) and at 

r = 100 [cm] is becomes less than 10% of the total kinetic energy (see Fig. 3.11e). 

Again, it should be noted that the measured data must be interpreted with caution. In 

this wake region, the flow is chaotic, with a vortex shedding taking place; it is 

possible that the measurements do not have a sufficiently time resolution to resolve 

this shedding movement. 
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Fig. 3.10  Measured turbulent kinetic energy around the cylinder. The data are 

normalized by the shear velocity in the approach flow, u,  0.0265  [m s]. 
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Fig. 3.10  Cont’d. 
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Fig. 3.11  Contour of the measured turbulence kinetic energy around the cylinder.  

The data are normalized by the total kinetic energy, k K k , where 

k  1
2 u u  v v  w w   and K  1

2 u
2
 v

2
w

2 . 
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3.4 Bed shear-stresses along the plane of symmetry 

Determination of the bed shear-stress, o , from the experimental data is a rather difficult 

task. While a direct measurement technique would be most desirable, here we must 

content ourselves with the estimate values based on available data from the velocity and 

shear-stress distributions (see Fig. 3.1 and Fig. 3.9). Three alternative methods were used: 

1. Based on the velocities, u and w, measured closest to the bed, z ≈ 4 [mm], a velocity 

parallel to the bed —at a distance of n— was calculated, Vt ; the bed shear-stress 

was calculated as: 

o,1   t

Vt

n








  t

Vt

n







 (3.5) 

where t 1.310
5

[m
2

s
2
] was taken as the measured eddy-viscosity in the 

approach flow. 

2. Based on the measured shear-stress distribution (see Fig. 3.9), a (rather subjective) 

extrapolation towards the bed was used to obtain the bed shear-stress, or: 

o,2   u w  
bed

cos (3.6) 

3. Based on a relation for the velocity distribution (see Graf and Altinakar, 1998, pp. 

73-74) the bed shear-stress was evaluated by: 

o,3   u,3 
2
  U

g

C
2











2

  0.07 U 
2
 (3.7) 

where U is the local depth-averaged flow velocity and C is Chezy coefficient taken as 

C = 44 [m
1 2

s] (uniform sand bed with d50 = 2.1 [mm]). 

A numerical simulation of the flow around the cylinder has also been performed (see 

Chapter 5), from which the bed shear-stresses can also be obtained; this is denoted as 

o,4 . Its value was obtained with a similar equation as Eq. 3.5, in which the k- 

turbulence model-equation and the logarithmic law-of-the-wall were used to get the eddy 

viscosity, t, and the velocity gradient, Vt n, (see Chapter 4, Eq. 4.82). For clarity, the 

expression used to compute o,4  is rewritten below: 

  

o,4  c
3 4 k

1 2 Vt

ln E n
 

 (4.82) 

where c = 0.09 is a k- model constant, k turbulent kinetic-energy,  = 0.4 Karman 

constant, E  roughness coefficient of the bed, n

 un  dimensionless normal 

distance from the bed, and  the kinematic viscosity of water. The sign convention of 

o,4  is the same as that of the velocity. 
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The bed shear-stress, o , obtained by the three methods applied to the measured data is 

presented in Table 3.1 and Table 3.2, and is plotted in Fig. 3.12; shown also in the figure 

is the one obtained from the numerical simulation. Evaluation is only done for the plane 

of symmetry upstream and downstream of the cylinder. The following is to be remarked: 

 In the approach region, x ≤ –45 [cm], all three methods render rather similar results, 

being 0.6 ≤ o [Pa] ≤ 1.0. The bed shear-stress in the approach region was earlier 

obtained as being o,  0.70  [Pa] or u,  0.0265  [m s]. 

 In the scour hole upstream of the cylinder, –45 ≤ x [cm] ≤ –10, the agreement is less 

convincing. It appears that the data using the velocity measurements, Eq. 3.5, seem to 

be more reliable; evaluation of the measurement of the velocity, Vt , is more objective 

than the one of the shear-stress,  u w  , at the bed. This is also evidenced by the 

numerical simulation, Eq 4.82, which depends on the velocity close to the bed. The 

global method, Eq. 3.7, would be simple, but applies essentially to uniform flow and 

does not take into account the flow reversal close to the bed; thus, the sign change is 

not respected. Note that the negative value indicates flow reversal at the bed. 

 Behind the cylinder, 10 ≤ x [cm] ≤ 80, the three methods render surprisingly similar 

results, being 0 ≤ o [Pa] ≤ 0.5, thus almost constant over the entire length measured. 

The measured bed shear-stress is slightly larger than the one in the upstream part of 

the scour hole; this was also observed by Melville and Raudkivi (1977) and Dey, 

(1997). On leaving the scour hole, the shear stress has about the same (absolute) value 

as the one in the upstream part of the scour hole; there is a weak tendency of an 

increase as leaving the scour hole. This is also observed from the numerical 

simulation result. 

 In both regions, upstream and downstream of the cylinder, the critical shear-stress, 

o,cr  1.36  [Pa], as calculated from the Shields diagram (for uniform sand with 

d50 = 2.1 [mm]), cr


 = 0.04 [–], was not exceeded. This is in agreement with eye 

observations. Thus the experiment is well a clear-water scour run, where the capacity 

of transport in the approach flow and in the scour hole is zero. 

The observation of the bed shear-stress variation as depicted in Fig. 3.12 reveals that the 

(high) bed shear-stress in the approach flow is gradually reduced on entering the scour 

hole, where it remains rather low on approaching the cylinder. Measurements by Melville 

and Raudkivi (1977) show a similar trend. 
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Table 3.1  Estimated bed shear-stresses based on the vertical distributions of the 

measured velocities and Reynolds stresses upstream of the cylinder. 

x 

[cm] 

U 

[m/s] 

U/U∞ 

[–] 

o,1  

[Pa] 

o,1 o,cr  

[–] 

o,2  

[Pa] 
o,3  

[Pa] 

u,1  

[m/s] 

u, 2  

[m/s] 

u, 3  

[m/s] 

-10 0.091 0.201 -0.010 -0.007 -1.800 0.040 -0.003 -0.042 0.006 

-11 0.095 0.212 -0.102 -0.075 -1.800 0.045 -0.010 -0.042 0.007 

-12 0.114 0.253 -0.047 -0.035 -1.400 0.064 -0.007 -0.037 0.008 

-13 0.121 0.268 -0.161 -0.118 -1.200 0.071 -0.013 -0.035 0.008 

-14 0.125 0.278 -0.246 -0.181 -1.200 0.076 -0.016 -0.035 0.009 

-15 0.139 0.309 -0.303 -0.223 -0.900 0.095 -0.017 -0.030 0.010 

-16 0.143 0.318 -0.071 -0.052 -0.600 0.100 -0.008 -0.024 0.010 

-18 0.156 0.346 -0.080 -0.059 -0.300 0.119 -0.009 -0.017 0.011 

-20 0.268 0.596 -0.196 -0.144 0.300 0.353 -0.014 0.017 0.019 

-22 0.281 0.625 -0.223 -0.164 0.300 0.388 -0.015 0.017 0.020 

-24 0.297 0.659 -0.205 -0.151 0.400 0.432 -0.014 0.020 0.021 

-26 0.312 0.693 -0.134 -0.098 0.300 0.476 -0.012 0.017 0.022 

-28 0.324 0.720 -0.076 -0.056 0.400 0.514 -0.009 0.020 0.023 

-30 0.343 0.763 -0.030 -0.022 0.700 0.577 -0.005 0.026 0.024 

-32 0.352 0.782 -0.019 -0.014 0.300 0.607 -0.004 0.017 0.025 

-34 0.360 0.801 -0.163 -0.120 1.000 0.636 -0.013 0.032 0.025 

-36 0.387 0.861 -0.084 -0.062 0.900 0.735 -0.009 0.030 0.027 

-38 0.404 0.897 -0.097 -0.071 0.700 0.798 -0.010 0.026 0.028 

-40 0.429 0.952 -0.072 -0.053 0.600 0.900 -0.008 0.024 0.030 

-42 0.449 0.997 -0.053 -0.039 0.600 0.986 -0.007 0.024 0.031 

-44 0.467 1.037 0.246 0.181 0.600 1.068 0.016 0.024 0.033 

-47 0.449 0.998 0.855 0.629 0.600 0.988 0.029 0.024 0.031 

-50 0.466 1.035 0.718 0.528 0.600 1.063 0.027 0.024 0.033 

-60 0.454 1.009 1.031 0.758 0.600 1.010 0.032 0.024 0.032 

-70 0.451 1.002 0.866 0.637 0.700 0.997 0.029 0.026 0.032 

-80 0.457 1.016 1.366 1.004 0.700 1.024 0.037 0.026 0.032 

Notes: 

U = local depth-averaged velocity 

U∞ = 0.45 [m/s] = approach velocity 

o,1 t Vt n t Vt n 

 t 1.310
5

 [m2/s2] = measured eddy viscosity in the approach flow 

 Vt  = velocity measured closest to the bed, z ≈ 4 [mm], projected on a plane 

          parallel to the bed 

 n  = normal distance between Vt  and the bed 

o,2   u w 
bed

cos 

o,3   u, 3 
2
  U g C

2 
2

  0.07 U 
2
, with C = 44 [m1/2/s] = Chezy coefficient 

o,cr  = 1.36 [Pa] = critical shear-stress according to the Shields criterion for  

 d50 = 2.1 [mm], or cr


 = 0.04. 
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Table 3.2  Estimated bed shear-stresses based on the vertical distributions of the 

measured velocities and Reynolds stresses downstream of the cylinder. 

x 

[cm] 

U 

[m/s] 

U/U∞ 

[–] 

o,1  

[Pa] 

o,1 o,cr  

[–] 

o,2  

[Pa] 

o,3  

[Pa] 

u,1  

[m/s] 

u, 2  

[m/s] 

u, 3  

[m/s] 

10 0.014 0.030 0.200 0.147 0.189 0.001 0.014 0.014 0.001 

12 0.043 0.096 0.179 0.131 0.300 0.009 0.013 0.017 0.003 

14 0.076 0.168 0.098 0.072 0.584 0.028 0.010 0.024 0.005 

16 0.091 0.202 0.138 0.102 0.616 0.040 0.012 0.025 0.006 

18 0.108 0.239 0.181 0.133 0.487 0.057 0.013 0.022 0.008 

22 0.152 0.337 0.214 0.157 0.453 0.113 0.015 0.021 0.011 

26 0.099 0.220 0.263 0.193 0.243 0.048 0.016 0.016 0.007 

30 0.103 0.229 0.372 0.274 0.026 0.052 0.019 0.005 0.007 

34 0.125 0.279 0.542 0.399 0.193 0.077 0.023 0.014 0.009 

38 0.139 0.309 0.376 0.277 0.099 0.095 0.019 0.010 0.010 

42 0.165 0.366 0.204 0.150 0.212 0.133 0.014 0.015 0.012 

46 0.191 0.425 0.258 0.190 0.312 0.179 0.016 0.018 0.013 

50 0.207 0.459 0.428 0.315 -0.076 0.209 0.021 -0.009 0.014 

60 0.243 0.540 0.481 0.353 0.086 0.289 0.022 0.009 0.017 

70 0.279 0.620 0.426 0.313 -0.018 0.382 0.021 -0.004 0.020 

80 0.290 0.644 0.397 0.292 0.000 0.412 0.020 0.000 0.020 

90 0.307 0.682 0.584 0.429 0.022 0.462 0.024 0.005 0.021 

100 0.336 0.747 0.646 0.475 -0.028 0.554 0.025 -0.005 0.024 

 

 

 



– 3.33 – 

 

Fig. 3.12  Estimated bed shear-stresses in the scour hole… 
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3.5 Summary and conclusions 

The measured 3D instantaneous velocity profiles presented in the preceding chapter (see 

Chapter 2) were analyzed. The emphasize of the analyses is put on the (time-averaged) 

velocity fields, notably their spatial variation in vertical planes around the cylinder, in 

order to investigate the flow alteration due to the existence of the cylinder and the scour 

hole. The turbulence characteristics, such as the turbulence intensities, the turbulent 

kinetic energy, and the Reynolds stresses, were also analyzed. An attempt was also made 

to estimate the magnitude of the bed shear-stresses in the scour hole along the plane of 

symmetry. 

A 3D flow establishes around the cylinder, being characterized principally by a clock-

wise circulating flow inside the scour hole (see Fig. 3.2). This structure, known as a 

horseshoe vortex, was detected particularly in the plane of symmetry upstream of the 

cylinder. Moving around the cylinder towards downstream, it diminishes and becomes 

practically undetected on the side plane. Downstream of the cylinder, a flow reversal 

towards the surface was observed, being pronounced in the close vicinity of the cylinder. 

It gradually disappears as the flow moves away from the cylinder and returns back 

towards the uni-directional flow condition. 

The velocity field outside the scour hole, i.e. in the upper layer above the original bed, is 

dominated by the longitudinal velocity component; only at the vicinity of the cylinder the 

transverse and, notably, the vertical velocity components are important (see Fig. 3.1). The 

flow direction of the approach flow passing the cylinder remains much the same. The 

effect of the cylinder in deflecting the approach flow is limited to regions close to the 

cylinder and in the scour hole. 

The vertical velocity component, which primarily manifests itself as a downward velocity 

particularly along the cylinder face, was separately investigated. Its spatial variation 

around the cylinder was found to have a particular characteristic. Along the cylinder face 

its maximum values fall at 40% of the local flow depth (see Fig. 3.6) irrespective of the 

angular direction. 

Presented in Fig. 3.13 are the measured flow pattern, showing the velocity components, 

(ur,w), in different planes around the cylinder, whereas in Fig. 3.14  are the corresponding 

main velocity components, (u,w), in those planes. It can be clearly seen the uni-

directional flow experiencing an alteration due to the cylinder and the scour hole, 

becoming a three-dimensional one. This alteration is notably observed in the region close 

to the cylinder and inside the scour hole. Outside the scour hole, the flow pattern is 

mainly dominated by the longitudinal velocity components. 

The intensity of turbulence inside the scour hole is strong; an increasing turbulence was 

detected approaching the cylinder and moving around the cylinder towards downstream. 

In the wake region, where a separation evidenced by a flow reversal takes place, the 

turbulence attains its strongest intensity (see Fig. 3.9). The kinetic energy of the flow 

inside the scour hole, where a rotating flow is eminent, consists of high turbulent energy 
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(see Fig. 3.10 and Fig. 3.11), ranging from 10% to 90% of the total kinetic energy. The 

profiles of the turbulent kinetic energy are characterized by distinguishable bulges below 

the original bed level (see Fig. 3.10). 

The longitudinal distribution of the bed shear-stresses along the plane of symmetry shows 

that the bed shear-stress is reduced upon entering the scour hole when compared to its 

value in the approach flow (see Fig. 3.12). The shear stress along the upstream scour bed 

has negative values corresponding to the flow reversal in that region. These observations 

are supported by the numerical simulation; this will be discussed in Chapter 5. 
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Fig. 3.13  Axonometric presentation of the flow pattern, showing the velocity 

components, (ur,w), measured around the cylinder. 
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Fig. 3.14  Axonometric presentation of the flow pattern, showing the main velocity 

components, (u,w), measured around the cylinder. 
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Notations 

 

C [m1/2/s] Chezy coefficient. 

c [–] k- model constant, c = 0.09. 

Dp [m] diameter of cylinder Dp = 0.15 [m]. 

d50 [m] mean diameter of sediment, d50 = 2.110
3

 [m]. 

E [–] bed roughness coefficient. 

 [m2/s3] kinetic energy dissipation. 

g [m/s2] gravitational acceleration, g = 9.81 [m/s2]. 

h, h∞ [m] flow depth, flow depth in the far-field approach flow. 

K [m2/s2] mean-flow kinetic energy. 

k [m2/s2] turbulent kinetic energy. 

n [m] normal axis. 

r [m] radial direction. 
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U, U∞ [m/s] sectional average velocity. 

U∞ [m/s] average velocity in the approach flow, U∞ = 0.45 [m/s]. 

u, v, w [m/s] Cartesian velocity components. 

u , v , w  [m/s] Cartesian fluctuating velocity components. 

ur, u [m/s] cylindrical (radial and tangential) velocity components. 

u  [m/s] shear velocity. 

u,  [m/s] shear velocity in the approach flow, u,  = 0.45 [m/s]. 

V,V,Vh [m/s] velocity, velocity projection on a plane ., velocity projection on a 

horizontal plane. 

Vt [m/s] velocity component parallel to the bed at a distance n. 

x, y, z [m] Cartesian coordinate directions. 

 [°] angular direction. 

 [°] deviation angle of the v-velocity component with respect to the 

plane of symmetry. 

n [m] normal distance from the bed. 

 [–] Karman constant,  = 0.4. 

, t [m2/s] kinematic viscosity, turbulent eddy viscosity. 

 [1/s] vorticity. 

 [°] slope of the inclined scour bed. 

 [°] angular direction. 

 [kg/m3] density of water. 

o [N/m2] shear stress, bed shear-stress. 

 [m] rotated x-axis. 
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4 Numerical Model Development 

Abstract 

Presented in this chapter is the development of a 3D numerical model intended to 

simulate flow around a cylinder. The model is based on the Reynolds-averaged Navier-

Stokes and continuity equations for incompressible flow, closed with the k- turbulence 

model. The working equation of the model is obtained by discretizing the governing 

equations, written in a general convective-diffusive transport equation, using finite-

volume techniques on a structured, collocated, boundary-fitted, hexahedral control-

volume grid. The hybrid (Spalding, 1972) or power-law (Patankar, 1980) upwind-central 

difference scheme, combined with the deferred correction method (Ferziger and Peric, 

1997), is employed in the discretisation of the governing equations. The solution of the 

working equation is achieved by an iterative method according to SIMPLE algorithm 

(Patankar and Spalding, 1972). Along solid boundaries, use is made of the wall function 

method, while along surface boundaries the pressure defect is used to define the surface 

position. On other boundaries, namely inlet, outlet, and symmetry boundaries, classical 

methods are used, such as zero gradients, zero stresses, or known functions. 

Résumé 

Ce chapitre présente un développement d‘un modèle numérique pour simuler 

l‘écoulement tridimensionnel autour d‘un cylindre. Le modèle est basée sur la 

représentation en volumes finis des équations de Reynolds, de continuité et de k-. Les 

équations, sous forme d‘une équation de transport, sont en suite formulées pour un 

maillage structuré dont les variables primitives sont définies au centre des volumes de 

contrôle. Les flux convectif et diffusif sont calculés par les méthodes hybride (Spalding, 

1972) ou loi de puissance (Patankar, 1980) avec des corrections des termes non 

orthogonaux (Ferziger and Peric, 1997). Le modèle utilise la méthode itérative de 

SIMPLE pour résoudre les équations de travail ainsi obtenues. Les conditions aux bords 

le long d‘une parois sont imposées par la loi logarithmique. La surface d‘eau est 

déterminée à partir des pressions résiduelles dans les cellules de surface. En autres tipes 

des bords, par exemple à l‘entré, à la sortie et aux plans de symétrie, des méthodes 

standards sont appliquées soit des gradients nuls, sans cisaillement ou des valeurs 

connues. 
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4.1 Governing equations 

The flow model that is developed in this work is based on the approximate solution of the 

time-averaged equations of motion and continuity for incompressible flows by using 

finite-volume method. In the Cartesian coordinate system these equations read: 

u

t

uu

x

vu

y

wu

z
 

1



p

x


1



xx

x


1



yx

y


1



zx

z
 gx  (4.1) 

v

t

uv

x

vv

y

wv

z
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1



p

y


1



 xy

x


1



yy

y


1



zy

z
 gy  (4.2) 

w

t

uw

x

vw

y

ww

z
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1



p

z

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in which x, y, and z are Cartesian co-ordinates in the horizontal, transversal, and vertical, 

respectively; u, v, and w are the corresponding (time-averaged) velocity components, p is 

the (time-averaged) pressure,  is the mass density of water, gx, gy, gz are the x, y , z 

components of the gravitational acceleration, and ij‘s are the j direction components of 

the shear stress acting on the surface normal to the i direction. These stresses are due to 

the molecular viscosity and turbulent fluctuation. For flows having sufficiently high 

Reynolds number, the viscous stresses are much smaller in comparison with those of the 

turbulence and thus can be neglected. Using Boussinesq‘s eddy viscosity concept, these 

stresses are proportional to the velocity gradients according to the following expressions 

(see Rodi, 1984, p. 10): 
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in which t is the turbulent or eddy viscosity and k is the turbulent kinetic energy defined 

as k  1
2 u u  v v  w w   where superscripts mean the fluctuating components. 

Inserting the definitions in Eq. 4.5 into the momentum equations, Eqs. 4.1 to 4.3, one 

obtains: 
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Separating the normal and cross second-derivatives and putting the former on the left-

hand sides, one gets: 
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The second to fourth terms on the left-hand side of Eqs. 4.6 to 4.8 represent a convective 

transport and the next three terms represent a diffusive transport. The terms on the right-

hand side are considered as sources and are treated as known quantities when solving the 

equations for the velocity components u, v, and w. The turbulent kinetic energy gradient, 

being small compared to the pressure gradient, is neglected. 

From the k- turbulence model (Launder and Spalding, 1974; Rodi, 1984, p. 27), the 

turbulent viscosity, t, is given by: 
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t  c
k2


 (4.9) 

where  is the dissipation of the turbulent kinetic energy. The field distributions of the 

turbulent kinetic energy and its dissipation are obtained from the following transport 

equations (Launder and Spalding, 1974; Rodi, 1984, p. 28): 
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in which G is the production of kinetic-energy given by: 
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The model coefficients c, c1, c2, k, and  contained in the above transport equations 

are assumed to be constant and take the values given in Table 4.1 (Launder and Spalding, 

1974; Rodi, 1984, p. 29). 

Table 4.1  Values of coefficients in k- model. 

c c1 c2 k 

0.09 1.44 1.92 1.0 1.3 

 

It is more convenient to cast the continuity equation, Eq. 4.4, the momentum equations, 

Eqs. 4.6 to 4.8, and the transport equations of k and , Eqs. 4.10 and 4.11, into a general 

transport equation (Versteeg and Malalasekera, 1995, p. 25): 
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 t
 V    R (4.13) 

In the above equations,  is any dependent scalar variable, V  is the velocity vector,  

is the diffusion coefficient, and R is a column matrix of scalar sources (see its definition 

in Table 4.2). Integrating this equation over a three-dimensional discrete control volume 

yields (Versteeg and Malalasekera, 1995, p. 25): 
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V   RdV 
V   (4.14) 
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The volume integrals of the convective and diffusive terms, the second and third terms on 

the left-hand side, can be expressed as integral over the closed surface bounding the 

control volume by applying Gauss divergence theorem (Versteeg and Malalasekera, 

1995, p. 26; Hirsch, 1988, p. 241): 
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V   (4.15) 

where S  is the surface vector normal outward to the control volume dV . 

Table 4.2  Terms in the general transport equation, Eq. 4.13. 
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4.2 Solution strategy: the iterative method 

The integral form of the general transport equation, Eq. 4.15, is used to obtain the 

solution for u, v, w, k, and  by substituting these variables to the scalar variable . The 

solution of the equation is sought at discrete time steps; calculations are performed at 

every discrete time steps and repeated until a steady-state solution is obtained. The time 

derivative term in Eq. 4.15 facilitates the application of the model to transient flow 

problems; in this case, the solution at each discrete time step must converge. When the 

problems concern steady case ones —as is the case in the present work— the time 

derivative serves as an iteration loop. In this case the solution at each time step is 

considered as an intermediate solution, and the end-solution (the steady-state one) is 

obtained when all variables ‘s converge. Since the end-solution that is sought, it is not 

necessary to force the intermediate solution to converge at the same degree of 

convergence as that of the end-solution. The complete computational procedure is 

depicted in the flowchart shown in Fig. 4.1. The time loop, from the initial until the 
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steady-state solution is depicted as the n-iteration. Every variable in the governing 

equations, Eq. 4.15, is linked to each other since they appear in every equation. To obtain 

the solution of every variable that satisfies all equations at a time step, an iterative 

procedure is employed; this is called the m-iteration in Fig. 4.1. The basic idea of the 

procedure is to consecutively solve the equations for each variable in the order of the 

momentum, the continuity and the k- equations. The momentum equation is solved 

successively for the u, v, and w components. The order of the computation is not 

important. The solution of each variable is sought independently, for example when 

solving the x-momentum equation for u, the other variables appearing in that equation, 

the v, w, k and , are assumed as known. When all velocity components are obtained, the 

pressure is computed through the continuity equation, which in turn will modify the 

velocity. New solutions of the momentum equation are then necessary. When the velocity 

and pressure converge, the k- equations are solved based on the latest values of the 

velocity components. The k is solved first and the  follows. When solving for , the 

latest value of k is used. The procedure is repeated until every variable satisfies all 

governing equations. 

Eq. 4.15, however, cannot be used to obtain directly the pressure. The pressure appears in 

the momentum equations, but does not have any equation of its own. The fourth equation, 

the continuity, does not explicitly link the pressure to the velocity. The solution of the 

pressure is thus not straightforward; some kind of a ‗trial-and-correction‘ procedure is 

employed. This is indicated as the -iteration. Firstly, the pressure is estimated and 

supplied to the momentum equation to get the u, v, and w velocity components. 

Secondly, the continuity equation is imposed upon those velocities. If the velocities do 

not satisfy the continuity equation, the velocities and the pressure are then corrected. The 

corrected pressure is used as the new estimate and the procedure is repeated. 

Upon the completion of the -iteration, the computation continues to the k- model. 

Given the velocity obtained from the -iteration, the k- equations are solved 

consecutively, and the eddy-viscosity is subsequently obtained. A check is carried out to 

all new variables 's. If each  satisfies all the governing equations, those variables are 

regarded as the values at the new time step, otherwise the computation goes back to the 

solution of the momentum equation (the m-iteration). 

The surface boundary which determines the computational domain but its position is part 

of the solution, is handled at the n-iteration and kept constant during the m-iterations. 

Thus the positioning of the free surface is carried out explicitly. At the end of the m-

iteration, the water surface is moved according to the pressure defect at the surface. This 

in turn will change the computational domain for the new time of the n-iteration.

The overall procedure thus involves three blocks of iteration. The first iteration block is 

to get solution of the velocity and pressure, i.e. solving the momentum equations and 

imposing the continuity. The second block solves the momentum, continuity, and k- 

equations within a time step. The last block is the time marching iteration to get the 

steady-state solution. 
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Fig. 4.1  Overall iterative procedure of the solution of Eq. 4.15. 
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4.3 Numerical method: the finite-volume approximation 

4.3.1 Grid arrangement 

The approximation to the solution of Eq. 4.15 is sought by finite-volume approach. The 

computational domain is discretized in a 3D grid having a finite number of control 

volumes (cells); the integration is then carried out in each cell. A non-orthogonal 

hexahedron cell is selected in the present model. A typical one is shown in Fig. 4.2. A 

cell is identified by its center, P, which makes up the node where the dependent variable 

is to be defined. A cell has six neighbors, named according to their respective compass 

directions, being the East, West, North, East, Top, and Bottom. The cell faces are 

identified at the face center and named with lower-case letters, namely the e, w, n, s, t, 

and b. The Cartesian coordinate system is selected for describing both the geometrical 

and flow properties, being the z axis defines the bottom-to-top direction. 

It is to be noted, however, that the grid in this model is selected such that the cell faces e, 

w, n, and s are parallel to the z axis. This choice is taken to facilitate the handling of the 

surface boundary. The discretisation of the governing equation, nevertheless, is carried 

out for general non-orthogonal cells. 

 

Fig. 4.2  Typical hexahedron control volume. 

The dependent variables, (u,v,w,p,k,), are defined at the cell center P, thus constituting 

a cell-centered non-staggered grid. Non-staggered grid variable arrangements may yield 

a problem of pressure-velocity decoupling that creates a spurious oscillation in the 

solution. This problem does not exist with the use of staggered grid. However, staggered 

grids require separate control volumes for the velocity and other dependent variables that 
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increase the computer storage requirement. For flows with three-dimensional geometry, 

the storage space required for additional control volumes is enormous. In addition, the 

non-orthogonality of the cells gives another complexity since the velocity components 

are not related to the alignment of the cell face. This makes the non-staggered grid is 

more suitable for 3D problems. To avoid the problem of pressure-velocity decoupling, 

use is made of the interpolation method according to Rhie and Chow (Rhie and Chow, 

1983). This method consists of determining the convective velocities on a non-staggered 

grid through the use of the discretized momentum equation, thus coupling the pressure 

field with the velocity field. The standard method for staggered grids, the SIMPLE 

(Patankar and Spalding, 1972), is then used to correct the pressure. The SIMPLE, an 

acronym for Semi-Implicit Method for Pressure-Linked, has been successfully employed 

for flow computations in two-dimensional problems (Kobayashi and Pereira, 1991; Obi 

et al., 1989; Ferziger and Peric, 1997) as well as three-dimensional cases (Olsen and 

Kjellesvig, 1998; Wu et al., 2000). The present model adopts a similar method. 

4.3.2 Computation of the surface area and of the cell volume 

Cell-face area 

The surface vector of the cell faces can be evaluated from the vector products of the 

diagonals. As can be seen in Fig. 4.3, the area of the east face, quadrilateral 5678, is half 

of that of parallelogram ABCD built on the diagonals 57 and 68 (note the use of the 

clockwise convention, seen from the cell center, to index the corners). Hence the surface 

vector is (Hirsch, 1988, p. 247): 



S5678 
1
2 SABCD  1

2


e x


e y


e z

x57 y57 z57

x68 y68 z68

















 1
2


e x


e y


e z

x7  x5  y7  y5  z7  z5 
x8  x6  y8  y6  z8  z6 

















 (4.16) 

When the cell face is not coplanar, the above expression gives the projection area of two 

triangles sharing a common side 57 or 68. The unit vector normal to a cell face is 

computed as follows: 




e n  S S  (4.17) 

The normal distance from point P to the east face can then be defined as 

n LPe 


e n 

e
, 

where LPe  is the vector originating from P to face center e (note that LeP  LPe ). 

Cell volume 

The cell volume is obtained by dividing the hexahedron into six tetrahedrons sharing one 

common diagonal 17 and one crest 1. Hence with L17  L7  L1, where L1  and L7  are 

the position vectors of 1 and 7, the cell volume is thus: 
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V 12345678  V 1857  V 1567 V 1627 V 1237 V 1347  V 1487

 1
6 L17  L18 L15  L15 L16  L16 L12 

L12 L13  L13 L14  L14 L18 

 (4.18) 

in which 

Lmn  xmn


e x ymn


e y zmn


e z  xn  xm 


e x  yn  ym 


e y  zn  zm 


e z  

 

Fig. 4.3  Evaluation of the surface vector and cell volume. 

4.3.3 Cell-face interpolation and gradient computation 

Cell-face interpolation 

Non-staggered grids define all computed variables at the cell centers. When values at the 

cell face are required, linear interpolation applies. Writing for the east face, the linear 

interpolation takes the following form: 
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 
e
 1e P  e E (4.19) 

with the interpolation factor e defined as: e LPe LPE . 

This expression is extensively used in the model, except in two cases, namely (a) when 

evaluating convective terms by using upwind differences (Sect. 4.3.5), and (b) when 

computing interpolated coefficients and starred velocities in the pressure-correction 

equation (Sect. 4.4). 

Gradients 

The Gauss theorem provides the gradient at the cell center. The gradients along the x, y, 

and z directions read (Hirsch, 1988, p. 253): 





x








P


1

V 
(


e x ) dV 

V  
1

V 



e x

S  dS 
1

V P
 Sx 

cf
cfewnstb





y











P


1

V 
(


e y ) dV 

V  
1

V 



e yS dS 

1

V P
 Sy 

cf
cfewnstb





z








P


1

V 
(


e z) dV 

V  
1

V 



e z

S dS 
1

V P
 Sz 

cf
cfewnstb



 (4.20) 

The summation extends over the six cell faces, cf: the east, west, north, south, top, and 

bottom. The dependent variable at the cell face, cf, is obtained by linear interpolation of 

the variables at the two intermediate neighboring cell centers (see Eq. 4.19). The same 

linear interpolation is applied when gradients are needed at the cell face. Using an 

overbar symbol to denote linear interpolated values, the gradients at the east face read: 



x







e

 1 e 


x







P

e



x







E



y











e

 1 e 


y











P

e



y











E



z








e

 1 e 


z








P

e



z








E

 (4.21) 

4.3.4 Discretisation of the time derivative terms 

The (pseudo-) time derivative term serves as a global iteration that embodies the iterative 

solution procedure as described in Sect. 4.2. The time iteration can be considered as an 

iteration level marking the progress of the surface computation since the surface 

boundary is updated at the end of a time step. The solution of Eq.4.15 at a given time step 

(n-iteration) designates an intermediate solution. The final solution will be achieved when 
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the iteration converges towards the steady-state solution. For an intermediate solution, a 

simple first-order finite-difference scheme can be appropriately used to evaluate the time 

derivative of Eq. 4.15: 



t
 dV 

n1  n

tV  V 
n
 (4.22) 

The cell volume V  is explicitly defined at time level n (V 
n

), since the new geometry of 

the computational domain is not yet known a priori. This applies also to all geometrical 

parameters such as surface area (S
n
) and spatial coordinate and distance ( x

n
, y

n
,z

n
,L

n
). 

In solving Eq. 4.15 for 
n1

, iterations have to be carried out to handle the non-linear 

terms. As shown in Fig. 4.1, there are two iteration loops, the - and m-iterations, in 

arriving to 
n1

 from known values 
n
. When these iterations converge, that is    

and m = ∞, we have 
n1

 
n,,m

. Eq. 4.22 thus can be approximated as: 





t
 dV 

n1  n

tV  V 
n


V n,1

t


n,1
 

n,1  (4.23) 

The variable index  is used to refer either - or m-iteration. With this approach, the 

transport equation, Eq. 4.15, can be rewritten as: 



V n,1

t


n,1
 

n,1 

time derivation
             

 V
S dS 

nn1

convection
           

  dS
S 

nn+1

diffusion
           

= R dV 
V  

nn1

source
           

  

 (4.24) 

The pseudo-time index n  n 1 is introduced to indicate the progress of the iterations 

n, m, and , used to evaluate the terms in bracket. Since the geometrical parameters are 

all evaluated at time level n, the convection-diffusion and the source terms contain 

explicit terms. The scheme is thus explicit. The pseudo-time step, t, is related to the 

under-relaxation factor used in the iterative procedure of the pressure computation; this 

will be discussed later in Sect. 4.4.3. 



4.3.5 Discretisation of the convective terms 

The discrete form of the convective terms in Eq. 4.24 for cell P reads: 


F

C 
P

nn1
 

1
V 

n

 d

S  

n

S





P
 

1
V 

n



S  

n




cfcfewnstb

  (4.25) 

The usual convention of the summation index applies, that is the summation runs over the 

six cell faces: the east, west, north, south, top, and bottom. The evaluation of the 
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convective transport through the east face is elaborated in the following paragraphs and a 

similar approach applies to the other faces. 



F
C 

e

nn1
  V S 

e

nn1

 V S 
e

nn1

e
nn1

 ue
n,Se,x

n  ve
n,Se,y

n we
n ,Se, z

n e
n,1  qe

e
1

 (4.26) 

In the above equation, qe is the discharge (the mass flux per unit mass) normal to the east 

face. For simplicity, the time index ‗n‘ is omitted and the notation q e

 stands for the 

discharge obtained from ue
n,

and Se
n
. A linearisation has been applied to the convective 

term in Eq. 4.26 by setting  as the only unknown while taking the discharge, qe, 

explicitly from the previous iteration. 

The unknown variable at the east face, e, is estimated by using upwind scheme, that is 

by taking its value at the upstream control volume which depends on the flow direction 

(Versteeg and Malalasekera, 1995, p. 115): 

e
1

 P
1

if qe

 0, e

1
 E

1
if qe


 0  (4.27) 

The convective flux across the east face, Eq. 4.26, is then: 


F

C 
e

nn1
 max qe


,0 P

1
max qe


,0 E

1
 (4.28) 

Note that the discharge, qe, is a scalar product of the velocity and the surface vector and it 

has a positive sign when leaving the cell. Thus the discharge across the west cell face of 

cell P is equal to the opposite value of that across the east face of cell W. The same is true 

for the other cell faces. The discharge across the north or top faces of cell P is equal to the 

opposite value of that across the south or bottom face of cells N or T, respectively. This 

property has to be kept in the calculation of the convective flux in order to maintain the 

flux consistency. The convective flux leaving the cell P across the east face is equal to 

that entering cell W; otherwise a discrepancy occurs between neighboring cells. The 

convective flux across the west face thus reads: 


F

C 
w

nn1
 max qw


,0 P

1
 max qw


,0 W

1
 (4.28a) 

4.3.6 Discretisation of the diffusive terms 

The discrete form of the diffusive terms reads in Eq. 4.24 for cell P: 

F
D 

nn1
    dS 

nn1

S    S 
cf

nn1

cfewnstb

  (4.29) 
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in which the summation extends over the six cell faces and the non-linear terms are 

linearized as in the evaluation of the convection term. The diffusion across the east face is 

elaborated and a similar approach applies for the other faces. 

In evaluating the diffusive term across the east face, it is convenient to use a local 

coordinate system attached to the east face as shown in Fig. 4.4. Across the east face, 

Eq. 4.29 reads: 


F

D 
e

nn1
   S 

e

nn1

 e
n, 

n








e

n,1

e n S 

e

n

 (4.30) 

 

 

Fig. 4.4  Evaluation of the diffusion terms across the east face 

 

The evaluation of the normal gradient presents some difficulties for its y and z 

components. Besides the variable at the neighbor cell E, additional ones at NE, SE, S, and 

N might have to be taken into consideration. This would increase the number of 

unknowns. To overcome this problem, the so called deferred-correction approach 

(Ferziger and Peric, 1997) is selected in the present model, where only the immediate 

neighbor cell needs to be considered. In this approach the normal gradient term is 

evaluated implicitly by a simple approximation and a correction is added. The correction 

is taken as the difference between the correct and approximate gradients; both are 

explicitly obtained from the previous iteration. This correction is put in the source terms 

at the right-hand side. The diffusion term evaluated with this approach reads (Ferziger 

and Peric, 1997, pp. 218-222): 



F
D 

e

nn1
 e


Se















e

1

 e


Se



n








e


















e















correction, explicit
             

 (4.31) 

In the above expression, the time index n is omitted for simplicity and a term without any 

index refers to the initial solution of the time step n  n 1 (for example Se is constant 
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during a time step, Se  Se
n,1

). In the local coordinate,  is the direction of a straight 

line joining P and E (see Fig. 4.4). An approximation is used to evaluate the gradient in 

the implicit term of Eq. 4.31 where a central difference is used (Ferziger and Peric, 1997; 

p. 224). 

















e

1


E

1  P
1

LPE

      with   LPE  LPE  (4.32) 

Substituting this relation to the implicit gradient, the diffusive flux reads: 



F
D 

e

nn1


e
Se

LPE









E

1


e
Se

LPE









P

1
 e


Se



n








e


















e















correction,exp licit
             

 (4.33) 

and for the west face, it reads: 
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 (4.33a) 

The explicit parts can be easily obtained since the Cartesian components of the gradient 

are known from the previous computation. 
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 (4.34) 

Applying Eq. 4.31 to the six cell faces gives 7 unknowns to the diffusion transport term 

for each computational cell P. Errors due to the use of a simple central difference to 

obtain diffusion across a cell face, Eq. 4.32, are minimized by the correction given in the 

explicit part of Eq. 4.31. It shall be nevertheless noted that the error will be magnified 

when the  direction of the cell face is far from its n-direction or when the east face 

center does not coincide with the line (see Fig. 4.4b). 

4.3.7 Convective-diffusive terms: hybrid and power-law schemes 

The convective upwind scheme, Eq. 4.27, is simple and easy to implement; it accounts 

for the flow direction. The scheme, however, is first order accurate and produces 

considerable error when diffusive transport is important. To avoid that problem, the so-

called hybrid scheme (Spalding, 1972) and power-law scheme (Patankar, 1980) give 
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formulae which combine the convective and diffusive transports in a special way. 

Depending on the grid Peclet number Pe, being the ratio of the convective and diffusive 

conductance, Pe  q L S  where L is the nodal distance, either the upwind-scheme 

convection, central-difference diffusion, or combination of the two, is considered to 

transport any scalar quantity  across a cell face. 

The hybrid scheme (Spalding, 1972) uses the upwind scheme for large Peclet numbers 

(|Pe| ≥ 2) and central difference for small Peclet numbers (|Pe| < 2). According to this 

scheme, the total flux across the east face, Fe  Fe
C
 Fe

D
, is defined as follows: 

 for Pee  qeLPE eSe  2 , only the convective transport is taken into account: 

 Fe
nn1

 qe

E

1
 (4.35) 

 for 2 Pee  qeLPE eSe  0, a part of the diffusive transport is also taken into 

consideration: 
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 (4.36) 

 for 0  Pee  qeLPE eSe  2, a part of the diffusive transport is also taken into 

consideration: 
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 (4.37) 

 for Pee  qeLPE eSe  2 , only the convective transport is taken into account: 

 Fe
nn1

 qe

P

1
 (4.38) 

The power-law scheme (Patankar, 1980, p. 90-91) sets the limiting value of Pe where the 

diffusion no longer affects the transport at Pe = 10, instead of Pe = 2 used in the hybrid 

scheme. 

 for Pee  qeLPE eSe  10 : 

 Fe
nn1

 qe

E

1
 (4.39) 

 for 10 Pee  qeLPE eSe  0: 
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 (4.40) 
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 for 0  Pee  qeLPE eSe  10: 
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 (4.41) 

 for Pee  qeLPE eSe 10 : 

 Fe
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 qe

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1
 (4.42) 

Equations 4.35 to 4.42 can be combined into a compact form as follows (Patankar, 1980, 

pp. 94-95): 
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 (4.43) 

where fD is a factor that depends on the absolute value of grid Peclet number; it has a 

different form for the hybrid and power-law schemes as shown in Table 4.3. 

 

Table 4.3  Hybrid and power-law scheme diffusion factors. 

Scheme f
D
 f Pe  f qL S  

Hybrid max 1 0.5 Pe , 0  

Power-law max 1 0.1Pe 5 , 0  

 

 

Arranging the terms in Eq. 4.43, one has: 
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 (4.43a) 

and for the west face, the convective-diffusive flux reads: 
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 (4.43b) 

Shorter notations is used to write the expression of the convective-diffusive flux, for 

example Eq. 4.43a maybe rewritten as 

Fe

nn1
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 bE
D

, in 

such a way that by summing up the convective-diffusive fluxes across the six faces of 

cell P, one obtains: 
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 (4.44) 

where the coefficients indicate contribution of convective-diffusive terms from 

neighboring cells as presented in Table 4.4. The diffusive-correction terms, being 

evaluated explicitly, are known from the previous iteration and are included in the 

independent coefficient bD. 

 

Table 4.4  Coefficients of the discretized convective-diffusive equations. 
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4.3.8 Source terms 

The source terms may consist of scalar quantities, first derivatives, or second derivatives 

of a scalar quantity. The source, in addition, may also include the time integration term, 

the diffusion correction, and known variables from the boundary conditions. Sometimes a 

term initially considered as a source takes advantage to be expressed as a function of the 

unknown variable at the cell center, such as cells next to a boundary. In that case, the 

term is linearized which gives (Versteeg and Malalasekera, 1995, p. 87): 


R dV 

V   R V P  b  bP P
1

 (4.45) 

in which b includes all known quantities (either constants, prescribed, or known from 

previous iteration) and bP is the coefficient of the unknown variable at P. 

Scalar source terms 

The source term containing scalar quantities, bS, comes from the gravity accelerations, gx, 

gy, gz, or the turbulent energy production and dissipation, G and . The scalar source at P 

represents the average value of those quantities in the cell being considered. It is known 

and thus is considered as a constant. Therefore, the source terms containing scalar 

quantities can be easily evaluated according to the following expression: 


b

S
 


dV 

V   P


V P  (4.46) 

In applying the above relation to the source terms of the k equation coming from the 

turbulent energy production, G, some approximations are needed. Writing Eq. 4.46 for G, 

we have: 

G dV 
V   GP V P  

Since the G term contains non-linear gradient terms (see Eq. 4.12), the above relation 

implies that these terms are evaluated individually (that is by using Eq. 4.20). This means 

that the integral of these terms are computed in the following fashion (an example is 

given here for the u x 
2
 term): 

u
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


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2

dV 
V  

u

x








P

2

V P 
1

V P

u

x
dV 

V 










2

V P  

This approximation, of course, will be inaccurate when the velocity gradient is important. 

Nevertheless, this method is selected for its easiness to implement. 

In the equation, the source term is linearized for the term containing 2 in the following 

form: 
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

b  c1

G

k







P



V P

b
S

        
c2



k







P



V P

b P

S

        
P

1
 (4.47) 

the last term of which will join the coefficient aP. 

First derivative source terms 

The source term containing first derivatives, b1D, is found in the pressure gradient of the 

momentum equation and in the velocity gradient of the energy production for the k- 

equations. Following the method described in Sect. 4.3.3, the source terms containing 

first derivatives in the x-, y-, and z-directions are evaluated as follows (the terms within 

brackets are generally predominant): 



b
1D 

x




x











dV 
V   (


e x ) dV 

V   

e x  dS

S  


Sx 
cf

cfewnstb



 e
Se,x  w

Sw,x  n
Sw,x  s

Ss,x  t
St ,x  b

Sb ,x

 (4.48a) 



b1D 
y




y













dV 
V   (

e y) dV 
V   

e y  dS
S  Sy 

cf
cfewnstb



 n
Sn,y  s

Ss,y  t
St,y  b

Sb ,y  e
Se,y  w

Sw,y

 (4.48b) 



b
1D 

z




z











dV 
V   (


e z) dV 

V   

e z  dS

S  


Sz 
cf

cfewnstb



 t
St, z  b

Sb, z  e
Se,z  w

Sw,z  n
Sw, z  s

Ss, z

 (4.48c) 

Second derivative source terms 

The source term containing second derivatives, b2D, is found in the momentum equation. 

These are due to the non-orthogonal terms of the stresses (see Eqs. 4.6 to 4.8) and the 

explicit parts of the diffusion terms (see Eq. 4.43). An example is given below for the 

evaluation of the source terms containing second derivatives in the u-momentum 

equation. 
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

b
2D 

x




x
 t

u

x











dV 
V    t

u

x











e x













dV 
V 

 t

u

x









e x  dS

S  t

u

x









Sx











cfcf



 t 
e

 u

x








e



Se,x   t 
w

 u

x








w



Sw, x  t 
n

 u

x








n



Sn,x 

 t 
s

 u

x








s



Ss,x   t 
t

 u

x








t



St ,x  t 
b

 u

x








b



Sb ,x

 (4.49a) 



b
2D 

y




y
t

v

x











dV 
V     t

v

x











e y













dV 
V 

  t

v

x









e y  dS

S   t

v

x









Sy











cfcf



 t 
n

 v

x








n



Sn ,y   t 
s

 v

x








s



Ss, y  t 
t

 v

x








t



St,y 

 t 
b

 v

x








b



Sb,y   t 
e

 v

x








e



Se, y  t 
s

 v

x








w



Sw,y

 (4.49b) 



b
2D 

z




z
t

w

x











dV 
V     t

w

x











e z













dV 
V 

 t

w

x









e z  dS

S  t

w

x









Sz











cfcf



  t 
t

 w

x








t



St ,z  t 
b

 w

x








b



Sb, z   t 
e

 w

x








e



Se, z 

 t 
w

 w

x








w



Sw, z  t 
n

 w

x








n



Sn ,z  t 
s

 w

x








s



Ss, z

 (4.49c) 

The last four terms on the right-hand side are due to the grid non-orthogonality; they 

vanish for orthogonal cells. The cell face values of the velocity gradients are obtained by 

linear interpolation (see Sect. 4.3.3 and Eq. 4.21). 

4.3.9 Assembly of the coefficients 

After evaluating all terms of the convection, diffusion, and sources over the entire 

computational domain and rearranging the coefficients, the discretized transport equation 
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produces a series of algebraic equations. For the unknown variable  at the cell center P, 

P(x,y,z,t), and at the neighboring cell centers nb, nb(x,y,z,t), the equation reads: 


aP P

1
 anbnb

1

nb

  b  (4.50) 

The coefficients anb, aP, and b in the above equation are listed below: 

 coefficients anb  consist of the convective and diffusive terms (see Table 4.4): 



aE  aE
C  aE

D  max qe
,0  fe

D S

LPE











e



,

aW  aW
C  aW

D  max qw
,0  fw

D S

L PW











w



,

aN  aN
C
 aN

D
 max qn


,0  fn

D S

LPN











n



,

aS  aS
C
 aS

D
 max qs


,0  fs

D S

LPS











s



,

aT  aT
C  aT

D  max q t
,0  ft

D S

LPT











t



,    and

 



aB  aB
C
 aB

D
 max qb


,0  fb

D S

LPB











b



. 

 coefficient aP is formed from various terms, namely the pseudo-temporal integration, 

convective-diffusive terms (Table 4.4), and terms coming from the source 

linearisation (see Eq. 4.47): 

aP  a P
T  a P

C  a P
D  bP


V P
t

 anb
C

nb

  qcf

cf










 a nb

D

nb










 bP

 

 source terms, b: 

b  b
S
 b

1D 
x
 b

1D 
y
 b

1D 
z
 b

2D 
x
 b

2D 
y
 b

2D 
z
 b

T
 b

D
 

bS   — scalar sources: Eq. 4.46 or 4.47, 

b1D   — first derivative sources: Eqs. 4.48, 

b2D   — second derivative sources: Eqs. 4.49, 
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b
T


V P

t
P

n
 — pseudo-time derivative source: Eq. 4.22, and 



b
D
  f

D



S 

cf



n








cf


















cf















cf

  — diffusive correction terms: Eq. 4.43. 

Note that for the boundary cells, the coefficients may change from the above definitions. 

This will be described in Sect. 4.5. 

Under-relaxation factor 

The solution of Eq. 4.50 for any dependent variable  through out the computational 

domain is achieved by iterative procedure, marching from known values at the iteration 

level  to new values at the iteration 1. During the process, oscillation may occur. In 

order to avoid such a problem, an under-relaxation factor is applied to updating the 

solution from iteration  to 1. Suppose that the solution at a particular iteration level 

is ˜ P , thus: 


aP

˜ P  anbnb
1

nb

  b (4.50a) 

Now, instead of taking that solution for the value of P
1

, one may take also into the 

consideration its value at the previous iteration level, P

, arguing that P

1
 should not too 

much different from P

. The under-relaxation factor, , is then applied according to the 

following form: 


P

1
 ˜ P  1 P


, or ˜ P 

1


P

1


1


P


 (4.51) 

Substituting this relation to the term ˜ P  in Eq. 4.50a, one finds: 


aP

1


P

1


1


P






 anbnb

1

nb

  b  

which, after some arrangements of the terms, yields: 



˜ a PP
1

 anbnb
1

nb

  ˜ b  (4.52) 

where the coefficients are now: 


˜ a P 

a P


   and   ˜ b  b  1  

aP


P


 b 1 ˜ a P P


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4.4 Pressure-velocity coupling 

4.4.1 SIMPLE algorithm 

When solving the momentum equation for velocity, the pressure is unknown and an 

estimated value, p

, is firstly used instead. In general, the velocity that is obtained does 

not satisfy the continuity equation. A correction to the estimated pressure is added and a 

new solution is sought for the new velocity. This procedure is repeated until it gives 

pressure and velocity fields satisfying not only the momentum equation but also the 

continuity equation. An iterative solution procedure known as SIMPLE (Semi-Implicit 

Method for Pressure-Linked Equation) method (Patankar and Spalding, 1972) is widely 

used for this velocity-pressure computation. The method requires velocity and discharge 

at cell faces, which are not immediately available with the use of non-staggered grids in 

the present model. The interpolation technique of Rhie-and-Chow (Rhie and Chow, 1983) 

solves this problem. The technique gives interpolated velocity at cell faces from the nodal 

values. The standard SIMPLE algorithm is then used to perform the pressure correction. 

This section gives some details of the procedure, which follows the derivation given by 

Patankar (Patankar and Spalding, 1972; Versteeg and Malalasekera, 1995; Ferziger and 

Peric, 1997). 

In the iteration 1, the discretized momentum equation, Eq. 4.52 with  = u, v, w, 

can be rewritten as: 



˜ a P ui,P
1

 anbui ,nb
1

nb

  ˜ b 
1


V P

p1

xi











P

 (4.53) 

where the symbols u i  and xi  are used to denote the Cartesian components of the velocity 

and direction, u i  u, v, w  and xi  x, y, z , respectively. Note that the pressure gradient 

in the above expression has intentionally been extracted from the source term, 

b , for a 

reason that will be evidenced later ( ˜ b  in Eq.  4.53 is thus not exactly the same as that in 

Eq. 4.52). 

The coefficients ˜ a P , anb , and the source terms, ˜ b , are functions of the known variables 

either at the precedent iteration, , or time step, n. For practical solutions of Eq. 4.53, 

since there are only 3 equations for 4 unknowns, the pressure p is temporarily fixed at its 

initial value. The following system of equations is solved in the first stage: 

˜ a P ui,P

 a nbu i, nb



nb

  ˜ b 
V P



p

xi











P

 (4.54a) 

p

 p


 (4.54b) 

The estimated pressure, p

, and the velocities obtained from this pressure, u


, v


,w


, are 

of course to be corrected: 
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u i
1

 ui

 ui

c
 (4.55a) 

p
1

 p

 p

c
 (4.55b) 

where the corrections, u i
c
 and p

c
, will result from the momentum equations combined 

with the continuity equation. The corrections are such that the velocity will satisfy the 

continuity and momentum equations when the iteration converges. It can therefore be 

said that Eqs. 4.54a,b become Eq. 4.53 when  . In that case, having a sufficiently 

large number of -iterations, we have 

u i
 


 ui

1
; and this is so for the coefficients 

and source terms. We can therefore obtain the relation between the pressure and velocity 

corrections by subtraction of Eqs. 4.54a,b from Eq. 4.53: 

˜ a P ui,P
c
 a nbu i, nb

c


nb

 
V P



pc

xi











P

 (4.56) 

Eq. 4.56 is a relation in which the corrections tend towards zero. A simplifying 

approximation can then be introduced by neglecting à priori the correction terms of the 

neighboring cells (Patankar and Spalding, 1972). The velocity correction thus reduces to: 

u i,P
c

 
1



V P
˜ a P

pc

xi











P

 (4.57) 

Since the coefficient 

a P  is derived in such a way that it is the same for all velocity 

components, i.e. ˜ a P
u
 ˜ a P

v
 ˜ a P

w
 ˜ a P , the above relation is valid for any velocity 

component at any point and thus also for the normal velocity component at a cell face. 

Writing for the east face, one has: 

un, e
c

 
1



V 

˜ a 







e

pc

n











e

 (4.58) 

The coefficient at the cell face, 

V 


a  

e
, is defined as the average value of those of the 

neighboring cell centers P and E: 

V 

˜ a 







e


1

2

V 

˜ a P











P


V 

˜ a P











E














 (4.59) 

Note that ˜ a P 
E

 represents the coefficient ˜ a P  of Eq. 4.52 written for the cell E, that is not 

the coefficient aE of Eq. 4.52 written for the cell P. Note also that the interpolation in 

Eq. 4.59 does not match the linear interpolation in Eq. 4.19 since this latter is not relevant 

for the volumes. Indeed the volume related to a cell for the east face is composed of the 

half volume of cell P and the half volume of cell E. Using the deferred-correction method 

as in the discretisation of the diffusive terms (see Sect. 4.3.6, Eq. 4.31) to compute the 

normal pressure gradient yields: 
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

un, e
c

 
1



V 

˜ a 







e

pE
c  pP

c

LPE











un,e
impl :  implicit

           


1



V 

˜ a 







e

pc

n











e


pc













e















old

un, e
no  : explicit

                 

 (4.60) 

in which the terms in the second square bracket are due to non-orthogonality of the cell 

and are evaluated explicitly. From the starred-velocity and the velocity correction, the 

normal velocity component can be computed: 

un, e  un,e


 un,e
c

 un, e


 un, e
impl

 un ,e
no

 (4.61) 

Here the velocity correction due to the cell non-orthogonality is written separately. 

Whilst the velocity correction is obtainable from Eq. 4.60, the starred-velocity 

unfortunately is not directly available at the cell face. Interpolating the starred velocity at 

the neighboring cell centers to get the cell face value would result in the decoupling of 

the velocity from the pressure that causes an oscillation of the solution. A remedy to this 

problem is to use the so-called Rhie-and-Chow interpolation technique (Rhie and Chow, 

1983) which replaces the interpolated pressure gradient at a cell face with the one 

computed from the pressure at the immediate neighboring cell centers. As can be seen in 

the relation below, writing the equivalent of Eq. 4.54a at the east face by simply 

interpolating these starred velocities would result in velocities that have no direct relation 

with the pressure difference between P and E: 

un
 

e


˜ b  a nbun, nb


˜ a P











e


1



V 

˜ a 







e

p

n











e

 (4.62) 

In order to relate the velocity at the east face back to the pressure difference between P 

and E, a correction is given to this interpolated velocity: 

un, e



˜ b  anbun, nb


˜ a P











e


1



V 

˜ a 







e

p

n











e
















1



V 

˜ a 







e

p

n











e


pE
  pP



LPE














 (4.63) 

This expression can be seen as the velocities at the cell centers P and E interpolated to the 

east face and corrected by a factor due to the interpolation: 

un, e


 un
 

e
 un, e

RC
 (4.64) 

where the overbar term is obtained from linear interpolation of the velocities in cell 

centers P and E. Using this expression to substitute the starred velocity in Eq. 4.61 gives: 

un, e  un
 

e
 un, e

RC
 un,e

impl
 un, e

no
 (4.65) 
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Next, we need to define the equation of the pressure correction, which is carried out by 

using the continuity equation. The discretized continuity equation can be obtained by 

writing the governing equation, Eq. 4.15, with  = 1,  = 0, and R = 0 that gives: 


V d


S 

S  V d

S  

cf
cfewnstb

  qcf
cf ewnstb

  un,cf Scf 
cfewnstb

  0  (4.66) 

Using Eq. 4.65 with the development of the implicit term in Eq. 4.60, and inserting the 

result to the above continuity equation, one gets the pressure correction equation of the 

form: 


1



V 

˜ a 







e

Se

LPE

pE
c  pP

c  1



V 

˜ a 







w

Sw

LPW

pW
c  pP

c  1



V 

˜ a 







n

Sn

L PN

pN
c  pP

c 


1



V 

˜ a 







s

Ss

LPS

pS
c
 pP

c  1



V 

˜ a 







t

St

LPT

pT
c
 pP

c  1



V 

˜ a 







b

Sb

LPB

pB
c
 pP

c 

 q
 

cf
 qcf

RC
 qcf

no 
cfewnstb

  0

 (4.67) 

where: 

q
 

cf
 ucf

 Scf,x  vcf
 Scf,y  wcf

 Scf,z interpolated discharge  

qcf
RC


1



V 

˜ a 







cf

p

n











cf


pnb
  pP



LnbP















Scf correction due to cell - face interpolation  

qcf
no
 

1



V 

˜ a 







cf

pc

n











cf


pc













cf















old

Scf correction due to non - orthogonal terms  

After arranging the terms, one has: 

aP
p

pP
c
 anb

p
pnb

c 
nb

  b
p
 (4.68) 

where: 

aE
p  

1



V 

˜ a 







e

Se

LPE

, aW
p  

1



V 
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





w

Sw

L PW
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p  

1


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




n

Sn

LPN

,

aS
p
 

1


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
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


s

Ss
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, aT
p
 

1



V 

˜ a 







t

St
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, aB
p
 

1



V 

˜ a 







w

Sb

LPB

,

aP
p
  anb

p
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 , b
p
  q

 
cf
 qcf

RC
 qcf

no 
cf

 .
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The pressure gradients encountered in the source terms are computed according to the 

following relations: 

p

n










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

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e
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
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e

xPE

LPE
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e
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
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LPE
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 (4.69) 

in which the interpolation of the pressure gradients along the Cartesian coordinates is 

done using Eq. 4.21. 

4.4.2 Pressure correction procedure 

The source term, b
p
, has pressure correction terms contained in the discharge due to non-

orthogonality of the cells, qe
no

. These terms are evaluated explicitly by a double-step 

pressure correction procedure as follows: 

 Solve Eq. 4.68 for pc by neglecting the non-orthogonal terms, qcf
no
 0 , and correct the 

velocities and pressure according to Eqs. 4.55a,b. 

 Solve again Eq.4.4 with the non-orthogonal terms now available from the first step 

and correct once again the velocities and pressure. 

4.4.3 Under-relaxation factor and time step 

To avoid instability of the computation, it is a common practice to put an under-

relaxation factor to the pressure correction, 0  
p
1, in updating the pressure: 

p  p



p
p

c
 (4.70) 

As mentioned in Sect. 4.2, the time step plays also as an under-relaxation factor for 

steady flow cases. This type of application, that is using the transient equations to solve 

steady flows, is generally known as a pseudo-transient computation. In order to achieve 

the effects of under-relaxed iterative steady-state computations from a given initial field 

by means of a pseudo-transient computation starting from the same initial field, the time-

step size is taken such that (Fletcher, 1997, p. 365): 


p


1

1 Et

with Et 
˜ a P

V P
t  (4.71) 
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4.5 Boundary conditions 

4.5.1 Boundary placement 

The boundary conditions that can be considered in the model are inflow, outflow, wall, 

(water) surface, and symmetry boundaries. The spatial discretisation of the computational 

domain is done in such a way that the boundaries coincide with the cell face (see Fig. 

4.5). The cell neighboring the boundary has special characteristics that modify the 

definition of cell set forth in Sect. 4.3.1; it has more than one node and less than six 

neighbors. Three types of cell and node are introduced (see Fig. 4.5): 

 Interior cell (the white cell) is a computational cell where the dependent variable, , 

is unknown and is to be computed at the interior node (the solid circle); an interior 

cell has only one node, the interior node. 

 Boundary cell (the gray cell) is a boundary neighboring cell whose one or more of its 

faces coincide with a boundary. A boundary cell has one interior node (the solid 

circle) at the center of the cell and one boundary node (the gray circle) at the center of 

each face that coincides with the boundary. The known boundary values of all 

variables  are to be defined at the boundary node, either given or extrapolated from 

the interior nodes.

 Dummy cell (hatched cell) and dummy node (white node) are used to denote the 

domain which is excluded from the computation, for example blocked-regions, 

cylinders, and corners. These dummy cells and nodes are necessary in order to 

maintain a continuous ordering of the cell and node indexes. 

Except of some special cases for the k and  equations, the effect of the boundaries to the 

computation for the interior node of a boundary cell is additive. In the discretized 

equation of u, v, w, and pc, the contribution of each boundary node is added to the source 

term, b, of the interior node of the boundary cell, and the coefficient related to this 

boundary node is eventually set to zero. The k and  for the interior nodes of boundary 

cells having wall or free-surface boundaries, however, are defined by a given expression. 

In the following sections are presented the method of computation for the boundary cells. 
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Fig. 4.5  Boundary conditions implemented in the model. 

4.5.2 Inflow boundary 

Suppose that the inflow boundary lies at the west face, w, of the boundary cell P (see Fig. 

4.6). The inflow boundary values across the face w are imposed as the boundary 

condition, whose values are defined at the boundary node W located at the same place as 

w (see Sect. 4.5.1): 

W  in  (4.72) 

The pressure is assumed to vary linearly between W, P and E: 

pW  pP

LPW


pE  pP

LPE

 pW  1 e pP e pE  (4.73) 
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The above relation holds as well for p

 and pc values. 

The boundary node denoted by W (instead of w) upon which the inflow boundary values 

are defined allows the discretized equations formerly established for interior nodes to be 

applied to the boundary node W without the need to change the notation. 

 

Fig. 4.6  Inflow boundary. 

Momentum and k- equations 

In forming the coefficients in Eq. 4.52, the following steps apply: 

 all variables at the inlet are given: W  in  

 evaluate the convective-diffusive terms as for normal interior cells: 

aW
C

, a W
D

, aP
C 

W
, aP

D 
W

, b
D 

W
, b

1D 
W

, b
2D 

W
 

 bring the contribution of node W to the source term: b  b b
D 

W
 aW

C
 a W

D W  

 set the coefficient at node W to zero: aW  0 

Pressure and velocity corrections 

The contribution of the discharge across the west face, qw, to the continuity equation, Eq. 

4.66, is replaced by the imposed discharge, qin. In forming the coefficients in Eq. 4.68, 

the following steps apply: 

 set the coefficient at node W to zero: aW
p
 0 

 set the contribution of the inflowing discharge to the source term: b
p 

w
 q in  

For the velocity correction, Eq. 4.57, the pressure correction gradient, p
c
xi , is 

computed by the finite-volume technique, Eq. 4.20, which requires the value of 

p
c 

w
 p

c 
W

. This latter is obtained by Eq. 4.73. 



– 4.32 – 

 

4.5.3 Outflow boundary 

Suppose that the outflow lies at the east face of the boundary cell P (see Fig. 4.7). Across 

the outflow face, the convective flux is computed according to the upwinding principle of 

Eq. 4.28: 


F

C 
e
 qe


P

1
 qout


P

1
 

while the diffusion flux is set to zero: 

F
D 

e
 0  

leading to a simplified form of Eq. 4.43: 

Fe  qout

P

1
 

where qout


 is either imposed or computed from the upwinding of P value at the former 

iteration step: 

qout


Vout



Se  VP



Se  

The same upwinding process finds the other variables at the boundary node E. 

E  e  P  

 

 

 

Fig. 4.7  Outflow boundary. 

Momentum and k- equations 

 set all coefficients related to node E in Eq. 4.52 to zero: 

aE
C
 aE

D
 a P

C 
E
 aP

D 
E
 b

D 
E
 b

1D 
E
 b

2D 
E
 0  
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 extrapolate all variables at P to E: E  P  

 the outflowing discharge results: qout


Ve



Se  VP



Se  

Pressure and velocity corrections 

The contribution of the discharge across the east face, qe, to the continuity equation, Eq. 

4.66, is replaced by the outflowing discharge, qout. In forming the coefficients in Eq. 4.68, 

the following steps are done: 

 set the coefficient at node E to zero: aE
p
 0  

 set the contribution of the inflowing discharge to the source term: b
p 

e
 qout  

For the velocity correction, Eq. 4.57, the pressure correction gradient, p
c
xi , is 

computed by the finite-volume technique, Eq. 4.20, which requires the value of 

p
c 

e
 p

c 
E

; this latter is obtained by the upwinding: p
c 

E
 p

c 
P

. 

4.5.4 Wall boundary 

Wall function approach 

The wall function approach (Launder and Spalding, 1974) is applied to the cell whose 

face is a rigid wall. Major assumptions used in this approach merit to be put forward 

before presenting the derivation of the wall function; they are: (1) the no-slip flow 

condition prevails at the wall with the universal logarithmic velocity distribution normal 

to the wall, (2) the production of the turbulent kinetic energy is merely due to the 

(turbulent) shear stress, thus neglecting the effect of the normal stress, and (3) a local 

energy balance exists, i.e. the dissipation of the turbulent kinetic energy is equal to the 

production. Given in the following paragraphs are the derivations of the wall function in 

which those assumptions are further highlighted. 
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Fig. 4.8  Wall boundary. 

 

(1) In wall boundaries, the center of the cells is located sufficiently close to the wall but 

outside the viscous sub-layer (see Fig. 4.8a); the universal logarithmic velocity 

distribution then prevails in the region Pb  (see Fig. 4.8b): 

  

Vt 
V


ln E n

    or   V 
 Vt

ln E n
 

,      with   Vt  Vt   and   n



Vn


 (4.74) 

in which V  is the shear velocity, Vt  is the velocity component parallel to the wall,  is 

the Karman universal constant, n is the normal distance from the wall,  is the molecular 

viscosity of water, and E  is the wall roughness coefficient. The coefficient E  in the 

above relation accounts for all flow regimes, either hydraulically smooth, rough, or 

transition. Note the directions of stresses on the wall face b; the shear stress, 

nt , is to the 

opposite direction of 

e t , whereas the normal stress, 


nn , is according to 


e n . These 

directions are consistent with the convention that shear forces are in the direction of 

positive increases of velocity (positive velocity gradients). In the direction of 

e n  of the 

(local) wall coordinate, (

e t,


e n ), the velocity gradient Vt n is negative, whereas 

Vn n  is positive. 

(2) The equation of the turbulent kinetic-energy production, Eq. 4.12, written in the wall 

coordinate system, (

e t,


e n ), shown in Fig. 4.8b, is: 
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G  t 2
Vt

t









2


Vn

t

Vt

n









2

 2
Vn

n









2











 (4.12a) 

Since the velocity is zero everywhere along the wall, Vt  0  (no-slip condition) and 

Vn  0 (no-flow across the wall), all velocity gradients along the wall (the tangential 

components) disappear. The above expression thus reduces into: 

G  t

Vt

n









2

 t 2
Vn

n









2

 (4.75a) 

The first and the second terms depict the turbulent kinetic-energy production due to the 

shear and normal stresses, respectively. In the wall function, the second term is neglected, 

which implies that the normal velocity component cannot develop in the wall region. This 

yields the following: 

G  t

Vt

n









2

 (4.75b) 

The validity of the above equation is strictly limited at the wall b, but is generally 

extended to the cell center P where it constitutes an approximation. The omission of the 

normal velocity gradient in Eq. 4.75a and the extension of Eq. 4.75b to the cell center are, 

of course, a rather rude approximation, notably in the case of flow around a cylinder. 

Measurement data in front of the cylinder (see Chapters 2 and 3) show that the radial 

velocity (the normal component) and the downward velocity (the tangential component) 

have the same order of magnitude. The normal velocity gradient, therefore, should be 

accounted for in the turbulent kinetic-energy production. However, the present model 

adopts Eq. 4.75b since it leads to a numerical simplification. 

(3) The third assumption in the wall function is the existence of a local balance between the 

turbulent kinetic-energy dissipation and its production,  = G (see Launder and Spalding, 

1974; Versteeg and Malalasekera, 1995, p. 73). This yields: 

P  GP  t

Vt

n









2











P

 (4.76) 

The eddy viscosity can be found from the Boussinesq concept, Eq. 4.5, and the definition 

of the friction velocity, nt ,b  V
2 . Considering that the variation of the shear stress is 

negligible in the wall region, nt ,b  nt ,P , and that the velocity gradient along the wall is 

negligible, Vn t 
P
 0 , one may write: 

V
2 

nt, b



nt ,P


 t

Vt

n

Vn

t



















P

 t

Vt

n








P

 (4.77) 
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The velocity gradient is obtainable from the logarithmic velocity distribution, Eq. 4.74: 

Vt

n








P


V

 n,P

 (4.78) 

Inserting this relation into Eq. 4.77, one obtains: 

t ,P  V  n,P  (4.79) 

Substituting Eqs. 4.78 and 4.79 into the right-hand-side of Eq. 4.76 yields: 

P  GP V  n,P

V

 n,P











2


V

3

 n ,P

 (4.80) 

Combining Eqs. 4.79 and 4.80 to the definition of the eddy viscosity in the k- model, 

Eq. 4.9, one gets: 

t ,P  c
kP

2

P

V  n  c
kP

2  n

V
3











 

V  c
1 4 kP

1 2 (4.81) 

There are now two expressions of the friction velocity, i.e. Eqs. 4.74 and 4.81. Both 

relations are used to evaluate the shear stress at the wall: 

  


nt , b  VV  c

1 4kP
1 2 Vt ,P

ln E n,P
 


e t  (4.82) 

The negative sign is required since 

nt is acting to the opposite direction of 


e t  (see Fig. 

4.8). This relation is the one necessary to evaluate the contribution of the wall boundary 

to the flow momentum equation; its implementation will be further presented later. 

Wall function: the final equations 

The link between the wall function and the k equation is achieved through the turbulent 

kinetic-energy production, Eq. 4.76, the velocity gradient, Eq. 4.78, and the shear 

velocity, Eq. 4.81. Combining these equations, one gets: 

GP  t

Vt

n









2











P


nt ,P



Vt

n








P


nt ,b



V

 n ,P











nt ,b



c
1 4 kP

1 2

 n,P

 (4.83) 
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with 

nt ,b 


nt ,b . 

This equation is used to define the energy production in the source term of the k equation 

(see Table 4.2) for cells neighboring the wall. 

For the  equation, the energy dissipation is obtained from Eqs. 4.80 and 4.81: 

P 
c

3 4 kP
3 2

 n,P

 (4.84) 

Before detailing the implementation of the wall function to the discretized momentum 

and k- transport equations, two variables need to be defined, namely the wall roughness 

coefficient, E , and the parallel velocity components, Vt . 

Wall roughness coefficient. The wall roughness coefficient, E, in the logarithmic 

velocity profile is adjusted according to the equivalent (standard) roughness, ks, whether 

it is hydraulically smooth, rough, or transition between smooth and rough. The following 

relation is used to define the roughness coefficient (Wu et al., 2000): 

  
E  exp  B B   (4.85) 

where B is an additive constant and B is a roughness function determined according to 

the standard roughness, ks, as follows (Cebeci and Bradshaw, 1977): 

  

B 

0 for ks

 2.25

B 8.5
1


ln k s







sin 0.4258 ln ks


 0.811   for 2.25  k s


 90

B 8.5
1


ln k s

 for ks
  90















 (4.86) 

with B = 5.2,  = 0.4, and ks

 V ks   being the roughness Reynolds number. 

Tangential velocity component. The velocity at the cell center P needs to be 

decomposed into its normal and tangential components with respect to the wall (see Fig. 

4.8b). The unit vector normal to the wall, 

e n , has an outward direction (see Eq. 4.17), 

while the unit vector tangential to the wall, 

e t , has the direction of the projection of V P  

on the wall. Both unit vectors are perpendicular in such a way that any vector (for 

example V P ) can be decomposed along them in the plane (

e t,


e n ) which also contains 

V P . For determining 

e t , it is necessary to find the projection Vt , P , which can be obtained 

from: 


Vt ,P  VP  Vn,P  VP  VP 


e n 

e n  (4.87) 
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Knowing Vt , P the unit vector 

e t  can be easily computed: 




e t  Vt Vt 

P

 (4.88) 

Implementation of the wall function 

Wall function for the momentum equation. Since there is no discharge across the wall, 

the convective flux does not exist across the wall face; the only flux is due to the 

diffusion. In the discretized momentum equation, Eq. 4.52, the diffusion term is not 

evaluated by Eq. 4.33, but by evaluating this term as a normal force (per unit mass) 

acting on the wall. Similarly the wall shear-stress, Eq. 4.82, is also transformed as a shear 

force. Both forces are considered as a source term and are evaluated at iteration , which 

then linearized such that the velocities at the cell center P become unknown variables. 

The force due to the normal stress acting on the wall (see Fig. 4.8) can be computed as: 



Fn













b






nn













b



Sb  t 2
Vn

n


e n








b



Sb  t 2
Vn

n


e n








P



Sb  t 2
Vn

n


e n











P



Sb  (4.89) 

The negative sign is necessary since the normal stress, 

nn , is in the negative direction of 

Vn  (see Fig. 4.8). All terms are evaluated explicitly, that is the velocity is from the 
th

 

iteration, the kinetic energy is from the mth iteration, and the geometry is from the nth 

time iteration. 

The force due to the shear stress acting on the wall is obtained from Eq. 4.82, but its form 

is modified to allow easy computation of the turbulent viscosity later on. 

  

Ft













b






nt













b



Sb  
c

1 4 k
m 

1 2
 n

ln E n
 















P

(1)
           

Vt

n


e t











P



Sb

(2)
      

 

The terms grouped in the first bracket on the right-hand side of the above expression have 

together the dimension of a viscosity, thus can be considered as the wall turbulent-

viscosity, t ,wall : 

  

Ft













b



  t ,wall

Vt

n











P



Sb , with t ,wall 
c

1 4 k
m 

1 2
 n

ln E n
 















P

 (4.90) 

Both forces are added to the source term of the boundary cell P, as the contribution from 

the wall boundary node B. The other coefficients related to the contribution from the 
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boundary node B are then assigned to zero. The following steps are used in evaluating the 

coefficients in Eq. 4.52: 

 set all coefficients related to the contribution of the boundary node B to zero: 

aB
C
 aB

D
 0, a P

C 
B
 aP

D 
B
 b

D 
B
 0, and b

2D 
B
 0  

 compute 

e t  using Eqs. 4.87 and 4.88 

 compute the forces due to the normal and shear stresses as source terms and linearise 

the source:  

 x-momentum: 



b  bP uP
1 

B


Fn,x




Ft, x













b



   t uen,x  2v en ,y  2wen, z en ,x   t ,wall vet, y  wet , z et , x 
P

 Sb

n,P

b 
B

                                 

 t en, x en ,x   t ,wall et ,x et,x  
P

 Sb

n ,P

bP 
B

                     

uP
1

 (4.91a) 

 y-momentum: 



b  bP uP
1 

B


Fn,y




Ft , y













b



   t 2 uen ,x  v en ,y  2wen, z en ,y   t,wall u et , x wet, z et , y 
P

 Sb

n ,P

b 
B

                                 

 t en, y en,y  t ,wall et ,y et,y  
P

 Sb

n ,P

bP 
B

                   

vP
1

 (4.91b) 
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 z-momentum: 



b  bP uP
1 

B


Fn, z




Ft, z













b



   t 2 uen ,x  2 ven, y  wen, z en ,z  t ,wall uet ,x  v et ,y et, z 
P

 Sb

n ,P

b 
B

                                 

 t en,z en,z  t ,wall et ,z et , z  
P

 Sb

n ,P

bP 
B

                   

wP
1

 (4.91c) 

Wall function for the k equation. The wall function is used to evaluate the source term 

of the k equation, G    The turbulent kinetic-energy production, G, for cells 

neighboring the wall is not evaluated by Eq. 4.12, but is directly obtained from Eq. 4.83. 

Since the velocity has been known when solving the k equation, this information can be 

used in calculating the wall shear-stress term in the G equation, Eq. 4.83. The turbulent 

kinetic-energy dissipation, , is evaluated by Eq. 4.84; this contains a non-linear term in k 

which is then linearized. The following steps apply: 

 set all coefficients related to the contribution from the boundary node B to zero: 

aB
C
 aB

D
 0, a P

C 
B
 aP

D 
B
 b

D 
B
 0 

 compute the source, that is the energy production and dissipation, and linearise the 

source: 

 



b  bP kP
m1

 G P  P V P


nt













b

m
c

1 4 kP
m 

1 2

 n,P

V P

b
             


c

3 4 kP
m 

1 2

 n,P

V P

bP

           

kP
m1  (4.92) 

where the magnitude of the shear stress is evaluated with the velocity already 

computed from the momentum equations (see Eq. 4.82): 

  

nt













b

m


1




nt ,b 

c
1 4 k

m 
1 2

ln E n
 















P

Vt ,P

m1


 t,wall

n











P

m

VP

m1



e t


t,wall

n











P

m

uP
m1 et ,x  vP

m1 et ,y wP
m 1 et ,z 

 

Note that kP
m1

 is unknown for this computation step, while uP
m1

, vP
m1

, and wP
m 1

 

are already fixed. 
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Wall function for the  equation. The turbulent kinetic-energy dissipation for cells 

neighboring the wall is defined by Eq. 4.84. This can be easily implemented as follows: 

 set all coefficients related to the neighboring cells to zero:  
aE  aW  a N  aS  aT  aB  0 

 set the coefficient at cell P to unity: aP = 1 

 set the source terms by (see Eq. 4.84): 

 b  P
m1


c

3 4 kP
m1 

3 2

 n,P

 (4.93) 

 where kP
m1

 is already computed in the previous step 

Wall function and pressure correction. Since the discharge across the wall is zero, the 

coefficient of the boundary node B in Eq. 4.68 is set to zero: aB
p
 0 . The pressure 

correction at the boundary node is obtained by direct extrapolation from the cell center P: 

pB
c
 pP

c
. 

4.5.5 Symmetry boundary 

At the symmetry plane, for example at the east face (see Fig. 4.9), the convective 

transport across the plane and the shear stress along the plane are zero. These properties 

make the velocity at E be easily obtained from the projection of the velocity at P to the 

plane. For the scalar variables, k and , an approximation is used by extrapolating the 

values at P to the boundary E. The following expressions thus apply at symmetry 

boundaries: 

 

 

Fig. 4.9  Symmetry boundary. 
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FC 
e
 0 for all 

nt ,e  0







 VE Vt ,P  

E =P     for   = k and   

The diffusive term in the momentum equations, which is due to the normal stress, is 

evaluated with the same method as that for the wall function approach. This term is 

considered as a force per unit mass acting on the plane. 

Momentum equations 

 set all coefficients related to the boundary node E in Eq. 4.52 to zero: 

aE
C
 aE

D
 a P

C 
E
 aP

D 
E
 b

D 
E
 b

1D 
E
 b

2D 
E
 0

 

 compute 

e t  using Eqs. 4.87 and 4.88; its components are et ,x,et ,y,et ,z . 

 compute the forces due to the normal stress as source terms: 

 x-momentum: 



b  bP uP
1 

E


Fn,x













e



   t uen,x  2v en ,y  2wen, z en ,x 
P

Se

n

b 
E

                     

  t en,x en,x  
P

 Se

n,P

bP 
E

             

 uP
1  (4.94a) 

 y-momentum: 



b  bP uP
1 

E


Fn,y













e



   t 2 uen ,x  v en ,y  2wen, z en ,y 
P

Se

n

b 
E

                     

 t en,y en,y  
P

 Se

n, P

bP 
E

             

 vP
1  (4.94b) 

 z-momentum: 



b  bP uP
1 

E


Fn, z













e



   t 2 uen ,x  2 ven,y wen, z en ,z 
P

Se

n

b 
E

                     

  t en, z en, z  
P

 Se

n,P

bP 
E

             

 wP
1  (4.94c) 
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k and  equations 

 set all coefficients related to the boundary node E in Eq. 4.52 to zero: 

aE
C
 aE

D
 a P

C 
E
 aP

D 
E
 b

D 
E
 b

1D 
E
 b

2D 
E
 0  

 extrapolate k and  at P to E: kE  kP  and E  P  

Pressure and velocity corrections 

Since the discharge across the boundary is zero, the coefficients related to the 

contribution from the boundary node E in the discretized pressure correction equation, 

Eq. 4.68, are set to zero: aE
p
 0 and b

p 
e
 0 . 

The pressure correction gradient, p
c
xi , needed for the velocity correction, Eq. 4.57, is 

computed by the finite-volume technique, Eq. 4.20, which requires the value of 

p
c 

e
 p

c 
E

. This latter is obtained by: p
c 

E
 p

c 
P

. The velocity at E has to be 

corrected such that it is parallel to the symmetry plane, since the flux across the boundary 

is zero. This is similar to assuming that the velocity at E is the same as the projection of 

the velocity vector at P on a plane parallel to the symmetry boundary: VE Vt ,P . 

4.5.6 Surface boundary 

At the (water) surface (see Fig. 4.10) the velocity is parallel to the boundary, the 

discharge across the (water) surface is zero, and thus there is no convective transport 

across this boundary. The shear stress along the surface, in addition, is neglected. This 

allows the specification of the velocity along the surface boundary the same as the 

projection of the velocity at the cell center. The water surface does not create turbulence; 

therefore, the kinetic energy along the surface boundary is set to zero. The energy 

dissipation, , at cell center is obtained in a similar manner as that at the wall boundary; a 

correction may be given to reduce the computed value as has been reported in some 

previous works (Krishnappan and Lau, 1986). 

For the pressure, a hydrostatic distribution is assumed between the surface and the cell 

center. The pressure at the surface is supposed to be atmospheric; if it is not the case, the 

surface is moved according to the pressure defect, relative to a reference pressure, which 

is prescribed at a particular cell. This reference cell is normally defined at the top-most 

cell of the outflow boundary. This is similar to prescribe a constant flow-depth condition 

at the outflow. The surface correction is done at the end of each time step. An under-

relaxation factor and a limitation may be imposed to avoid excessive change of the 

computational domain. The procedures to handle surface boundary are described in the 

following paragraphs. 
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Fig. 4.10  Surface boundary. 

Momentum equations 

 set all coefficient related to the boundary node T in Eq. 4.52 to zero:  

aT
C
 aT

D
 a P

C 
T
 a

D 
T
 b

D 
T
 b

2D 
T
 0

 

 compute 

e t  using Eqs. 4.87 and 4.88 

 compute the forces due to the normal stress as source terms: 

 x-momentum: 



b  bP uP
1 

T


Fn,x













t


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P

St

n

b 
T

                     

  t en,x en,x  
P

 St

n,P

bP 
T

             

 uP
1  (4.95a) 

 y-momentum: 



b  bP uP
1 

T


Fn,y













t



   t 2 uen ,x  v en ,y  2wen, z en ,y 
P

St

n

b 
T

                     

 t en,y en,y  
P

 St

n, P

bP 
T

             

 vP
1  (4.95b) 
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 z-momentum: 



b  bP uP
1 

T


Fn, z













t



   t 2 uen ,x  2 ven,y wen, z en ,z 
P

St

n

b 
T

                     

  t en, z en, z  
P

 St

n,P

bP 
T

             

 wP
1  (4.95c) 

k equation

 set all coefficient related to the boundary node T in Eq. 4.52 to zero:  

aT
C
 aT

D
 a P

C 
T
 a

D 
T
 b

D 
T
 b

2D 
T
 0  

 set the surface kinetic energy at T to zero: kT = 0 

 equation

 set all coefficients related to all neighboring cells to zero: 
aE  aW  a N  aS  aT  aB  0 

 set the coefficient at cell P to unity: aP = 1 

 set the source terms by (see Eq. 4.84 and also Krishnappan and Lau, 1986): 

P
m1

 cf

c
3 4 kP

m1 
3 2

 n,P

 (4.96) 

where cf is an empirical constant, which is set to 0.164 

Pressure and velocity corrections 

 set the coefficient at T in Eq. 4.68 to zero: aT
p
 0  

 extrapolate the pressure correction at P to T: pT
c
 pP

c
 

 correct the pressure and the velocity 

 extrapolate the velocity at P to T and correct this velocity: VT Vt ,P  

Surface correction 

 extrapolate the pressure at P to T by assuming a hydrostatic distribution: 

pT  pP gz zPT (see Fig. 4.11a), with g z  the z-component of 

g  (generally 

negative) 

 compute the surface correction based on the pressure-defect relative to the reference 

pressure: h
( p)

 pT  pref  gz  
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Fig. 4.11  Surface correction: (a) displacement of the vertices of the surface boundary 

cells, (b) modification of the variables at the new cell centers. 

 

 compute the upper limit of the surface correction based on the cell thickness: 

h
z 
 1zPT, 0 ≤ 1  ≤ 1 

 compute the displacement of the boundary node T by: 

h  h
p 
min 1, min

allcells

h
z 

h
p 
























  

 since a cell is defined by its vertices, h at T needs to be distributed over the vertices, 

Te, Tw, Tn, Ts (see Fig. 4.11a); linear interpolation is used 

 move the cell vertices of the free-surface boundary cells according to the new 

coordinates of Te, Tw, Tn, Ts 
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 reconstruct the mesh, maintain the number of cells in the vertical and their relative 

positions to the local depth 

 use linear interpolation to get variables at the new cell centers (see Fig. 4.11b) in 

order to maintain the continuity: 

u P  uP

z

 z 
, v P  vP

z

 z 
, w P wP,

k P  kP

z

 z 
,  P  P

z

 z 
, p P  pP   g z h

 

 continue the computation to the next time level 

4.6 Solution procedures 

4.6.1 Spatial discretisation 

Applying the discretized governing equations, Eqs. 4.52 and 4.68 requires spatial 

discretisation of the computational domain. The domain is divided into Ni–2, Nj–2, and 

Nk–2 cells in the x-, y-, z-directions, respectively, from which there are Ni, Nj, and Nk 

nodes (interior, boundary, and dummy nodes) in the corresponding directions. A typical 

spatial discretisation is shown in Fig. 4.12. The cell and node are denoted by a single 

index; the cells are indexed by ijk = 2,3,…,Nijkm, going along the y-direction (j = 

2,3,…,Nj–1), the x-direction (i = 2,3,…,Ni–1), and the z-direction (k = 2,3,…,Nk–1), 

while the nodes are indexed by ijk = 1,2,…,Nijk. With this indexing, the single-index ijk 

for a cell and for its six-neighbors can be easily obtained from their position in the (x,y,z) 

space (see Table 4.5). 

Writing Eq. 4.52 or 4.68 for all cells, ijk = 2,3,…,Nijkm, produces a series of algebraic 

linear equations which can be presented in a matrix form as follows: 

A  B (4.97) 

The matrix A contains the coefficients of the equations, anb and aP,  is a column matrix 

of the dependent variable, and B is a column matrix of the source terms. The matrix A 

has diagonal blocks which are themselves tridiagonal, and sub- and super-diagonal blocks 

in which each block has two diagonals, thus it has only 7 non-zero diagonals while the 

other elements are zero. It is then not necessary to store all elements of the matrix A; only 

those seven diagonals need to be stored. To facilitate the storage, each non-zero diagonal 

is stored in a separate column matrix, i.e. Anb, nb = EWNSTB, and AP. Fig. 4.13 shows 

the form of the matrix A. 
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Fig. 4.12  Typical spatial discretisation of the computational domain. 

Table 4.5  Triple and single indexing of computational cells. 

Direction Nodal index Cell index 

x–direction i = 1, 2, ..., Ni i = 2, 3, ..., Ni–1 

y–direction j = 1, 2, ..., Nj j = 2, 3, ..., Nj–1 

z–direction k = 1, 2, ..., Nk k = 2, 3, ..., Nk–1 

Cells in the xy–plane ij = 1, 2, ..., Nij 

(Nij = Ni   Nj) 

ij = 2, 3, ..., Nijm 

[Nijm = (Ni–1)   (Nj–1)] 

Cells in the domain ijk = 1, 2, ..., Nijk 

(Nijk = Nij   Nk) 

ijk = 2, 3, ..., Nijkm 

[Nijkm = Nijm   (Nk–1)] 

Cell Triple-index Single-index 

P i,j,k ijk = (k–1) Nij + (i-1) Nj + j 

E i+1,j,k ijk + Nj 

W i–1,j,k ijk – Nij 

N i,j+1,k ijk + 1 

S i,j–1,k ijk – 1 

T i,j,k+1 ijk + Nij 

B i,j,k–1 ijk – Nij 
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Fig. 4.13  The structure of the matrix coefficient A; all elements not shown are zero. 

4.6.2 Matrix solvers 

The solution of Eq. 4.97 is achieved by iteration techniques. Two matrix-solver routines 

are available in this model, i.e. the SIPSOL, for the Strongly-Implicit Procedure method 

(Stone, 1968), and the CGSTAB, for the Conjugate Gradient Stabilized method of Van 

den Vorst (see Ferziger and Peric, 1997, pp. 105-106). For the first solver, the SIPSOL, 

the solution procedure follows the one proposed by Jesshope (Jesshope, 1979) with some 

modification to suit for the 7-point computational-cells of the three-dimensional cases. 

The CGSTAB routine is taken from the reference (Ferziger and Peric, 1997, pp. 105-

106) without any major modification. Without going into detail, the iterative procedure of 

the routines can be summarized as follows: 

 given an initial solution, define a residue, that is the difference between the left- and 

right-hand side of Eq. 4.97, 

 calculate an increment based on the initial solution and residue, 

 update the solution by adding the increment to the initial solution, 

 repeat the procedure until convergence. 

The iterative procedure to get the solution of Eq. 4.97 is commonly denoted as inner-

iteration. This is to be distinguished from the outer-iteration, that is the one necessary to 

seek the solution satisfying the momentum and continuity equations (the -iteration) or 

all the governing equations, the momentum, continuity, and k- equations (the m-
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iteration). The inner-iteration seeks the solution for each dependent variable,  across the 

computational domain for given coefficient and source terms, A and B, which are 

constants. The solution for every dependent variable,  ( = u,v,w,p,k,), is sought one 

after another. In the outer-iteration, solution is obtained for every dependent variable that 

all together satisfies the governing equations. In each outer-iteration, the coefficient and 

source terms are adjusted, where as in the inner-iteration, they are kept constant. 

When performing the inner-iteration, it is important to decide when to quit the solver. 

Since the solution of Eq. 4.97 for a particular variable, u for example, at a particular 

iteration level, , does not necessarily satisfy all governing equations for u,v,w,p,k,, it is 

inefficient to carry out a rigorous iteration at this stage. A restricted number of iterations 

and a moderate convergence criterion will do. A single or at most a two inner-iteration is 

generally sufficient to solve the momentum equation for u, v, and w since their equations 

are of convection types. The pressure correction however requires a number of sweeps 

over the entire domain to have a solution error within a sufficiently small allowable limit. 

The convergence of the k and  equations, being of convection-diffusion types, may also 

be slow. This is due to the need of a small relaxation factor in the iteration process to 

avoid oscillations. The residue of the solution of Eq. 4.97 is used as the basis to detect the 

solution error; it is defined as: 

  b a PP  anbnb
all cells

  (4.98) 

The calculation in the inner-iteration is stopped when either one of the following criteria 

is satisfied: 


mi
 1 (4.99a) 


mi


mi1

 2  (4.99b) 

mi  NIT  (4.99c) 

in which 
mi

 is the sum of absolute residues over all cells after mi
th

 iterations for any 

variable ;  and 2 are prescribed convergence criteria; and NIT is the maximum 

number of inner-iterations. Table 4.6 gives the default values of these criteria for each 

variable . 

 

 

 

Table 4.6  Criteria to stop the inner iteration 
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   NIT 

u,v,w 10
6

 [m4/s2] 10
3

 2 

p 10
5

 [m3/s] 10
2

 20 

k 10
6

 [m5/s3] 10
3

 5 

 10
6

 [m5/s4] 10
3

 5 

 

The calculation sequence is presented in the calculation diagram depicted in Fig. 4.14, 

and is summarized as follows: 

a) Initialize all dependent variable: o(u,v,w,p,k, are given). 

b) Define the geometrical properties, discretise the spatial domain. 

c) Compute initial discharges, qcf, and eddy viscosity, t. 

d) Assign estimated pressures p

,. 

e) Construct coefficients of the discretized momentum equations. 

f) Solve the momentum equations for u

, v


, and w


, consecutively. 

g) Construct coefficients of the discretized pressure correction equation. 

h) Solve the pressure-correction equation for pc and subsequently update the pressure, p, 

and velocities at the cell centers, u, v, and w. 

i) Compute the new discharge across cell faces, qcf. 

j) Return to step ‗d‘ if the velocity components and pressure do not satisfy the 

momentum and continuity equations. 

k) Construct coefficients of the discretized k transport equation and solve for k; do the 

same procedure to get . 

l) Compute the eddy viscosity, t, from the new k and  

m) Update the water surface if the solution has converged, otherwise assign the new u, v, 

w, p, k, and  as the new ‗old‘ values and return to step ‗d‘. 

n) Stop the iteration if the steady-state solution has been reached, otherwise proceed to 

the next time step, return to step ‗d‘. 
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Fig. 4.14  Computational procedures. 
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4.7 Summary 

Development of a three-dimensional numerical flow model has been presented. The 

model is based on the approximate solution of the Reynolds averaged Navier-Stokes 

equations, the continuity equations, and the k- turbulence closure model. These 

equations are expressed in a general convective-diffusive transport equation on a 

Cartesian coordinate system. The working equation of the model is obtained by 

discretizing this transport equation by using finite volume techniques on a structured, 

collocated, boundary-fitted, hexahedral control-volume grid. The hybrid (Spalding, 1972) 

or power-law (Patankar, 1980) upwind-central difference scheme, combined with the 

deferred correction method (Ferziger and Peric, 1997), is employed in the discretisation 

of the governing equations. The solution of the working equation is achieved by an 

iterative method according to SIMPLE algorithm (Patankar and Spalding, 1972). Along 

solid boundaries, use is made of the wall function method, while along surface 

boundaries the pressure defect is used to define the surface position. On other boundaries, 

namely inlet, outlet, and symmetry boundaries, classical methods are used, such as zero 

gradients, zero stresses, or known functions. 

The model is applicable for steady state flow cases, but not for transient ones. The time 

step is used as an iteration step to mark, notably, the change of the computational domain 

due to the moving surface boundary. 
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Notations 

Capital letters 

A [m3/s] coefficient matrix of the momentum and k- equations. 

A
p
 [m3/s/Pa] coefficient matrix of the pressure-correction equation. 

B  vector matrix of the source terms: 

 [m4/s2]  for the momentum equation, 

 [m5/s3]  for the k-equation, 

 [m5/s4]  for the -equation. 

B
p
 [m3/s] vector matrix of the source terms for the pressure-correction 

equation. 
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B, B [–] constant and wall roughness function. 

E [–] wall roughness coefficient. 

E t  [–] time step factor. 

F, FC, FD  total, convective, and diffusive transports: 

 [m4/s2]  of the momentum flux, 

 [m5/s3]  of the turbulent kinetic-energy flux, 

 [m5/s4]  of the dissipation of kinetic-energy flux. 

G [m2/s3] turbulence kinetic-energy production. 

L  [m] length vector. 

NIT [–] number of inner iterations. 

P [–] cell center. 

Pe [–] grid Peclet number, the ratio between the convective and diffusive 

conductance. 

Q [m3/s] discharge across sectional area of channels. 

R  source terms: 

 [m/s2]  of the momentum equation, 

 [m2/s3]  of the k-equation, 

 [m2/s4]  of the -equation. 

Re [–] Reynolds number. 

S  [m2] cell-face surface vector. 

V  [m/s] velocity vector. 

Vn  [m/s] normal velocity vector. 

Vt  [m/s] parallel (tangential) velocity vector. 

V  [m/s] friction velocity vector. 

V  [m3] cell volume. 

Lower case letters 

aP ,anb  [m3/s] matrix coefficients of the momentum and k- equations. 

aP
C
,a nb

C
 [m3/s] matrix coefficients of the momentum and k- equations due to the 

convective transport. 

aP
D

,anb
D

 [m3/s] matrix coefficients of the momentum and k- equations due to the 

diffusive transport. 

aP
p
,anb

p
 [m3/s/Pa] matrix coefficients of the pressure-correction equations. 

˜ a P  [m3/s] under-relaxed matrix coefficient. 

b, ˜ b   source term and under-relaxed source term: 

 [m4/s2]  of the momentum equation, 

 [m5/s3]  of the k-equation, 

 [m5/s4]  of the -equation. 

bD [m4/s2] source term due to the diffusive-correction. 

bP [m3/s] source term coefficient due to the source linearisation. 

b
p
 [m3/s] source term coefficient of the pressure-correction equation. 

c1, c2, c [–] constants of the k- equation. 



e  [m] directional unit vector. 

fD [–] coefficient of the hybrid and power-law convective-diffusive 

schemes, a function of the grid Peclet number. 
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gx,gy,gz [m/s2] Cartesian components of the gravitational acceleration. 

k [m2/s2] turbulent kinetic energy. 

ks [m] wall roughness height. 

ks


 [–] Reynolds number based on the friction velocity and wall 

roughness. 

n [m] normal direction. 

p, p

, p

c
 [Pa] pressure, estimated pressure, and pressure correction. 

q [m3/s] discharge. 

q

 [m3/s] estimated discharge obtained from (u


, v


,w


) . 

qc,qRC,qno [m3/s] discharge corrections due to the velocity-correction, cell-face 

interpolation, and non-orthogonal terms. 

t, t [s] pseudo-time and pseudo-time step. 

u,v,w [m/s] Cartesian velocity components. 

u

, v


,w


 [m/s] Cartesian velocity components obtained with estimated pressures. 

u , v , w  [m/s] fluctuating parts of Cartesian velocity components. 

u, v,w  [m/s] Cartesian friction-velocity components. 

un

 [m/s] velocity obtained with estimated pressure. 

un
c
 [m/s] pressure corrections. 

un
impl

,un
RC

,  [m/s] pressure correction components: implicit, Rhie-and-Chow,  

un
no

  non-orthogonal. 

x, y, z [m] Cartesian coordinate components. 

Greek characters 

 [m2/s] diffusion coefficient. 

 [–] linear interpolation factor. 

h  [m] surface displacement. 

h
( p)

 [m] surface displacement due to the pressure. 

h
( z)

 [m] surface displacement limitation according to the cell size. 

n [m] normal distance. 

n

 [–] dimensionless normal-distance. 

 [m2/s3] dissipation of the turbulent kinetic energy. 

  flow variable, the dimensional unit depends on the variable of 

which it represents. 

   matrix of the flow variables. 

 [–] Karman constant. 

  convergence criterion: allowable maximum residue of the solution: 

 [m4/s2]  of the momentum equation, 

 [m4/s2]  of the k-equation, 

 [m4/s2]  of the -equation, 

 [m3/s]  of the pressure-correction equation. 

2 [–] convergence criterion: allowable relative maximum-residue of the 

solution. 

, t [m2/s] kinematic viscosity and turbulent eddy viscosity. 

t ,wall  [m2/s] wall eddy-viscosity. 

 [kg/m3] density of water. 
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,1, 
p
 [–] under-relaxation factors. 

k,  [–] constants of the k- model.

 [N/m2] Reynolds stress. 

 [m] local coordinate directions. 

Other characters 

   total residue: 

 [m4/s2]  of the momentum equation, 

 [m4/s2]  of the k-equation, 

 [m4/s2]  of the -equation, 

 [m3/s]  of the pressure-correction equation. 

,   [1/s] divergent and gradient nabla operators. 

Superscripts 

c  corrected value. 

, 1  iteration level indices. 

m, m+1  iteration level indices. 

n, n+1  time level indices. 

*  estimated value. 

Subscripts 

P  cell center. 

i, j, k  Cartesian component indices. 

cf = e,w,n,s,t,b cell faces: the east, west, north, south, top, and bottom. 

  dependent variable index. 

n, t  normal and tangential direction component indices. 

nb = E,W,N,S,T,B neighboring cells: the East, West, North, South, Top, and Bottom. 
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5 Numerical Simulation 

Abstract 

The numerical model presented in the preceding chapter is here applied to simulate the 

flow around a cylinder. Before the simulation, a series of calibration and test runs were 

performed, in which the measured data in the uniform approach flow were used. A 

calibration run was performed to find the model value of the equivalent roughness of the 

bed. The test run was intended as a verification of the model basic performance, notably 

against different criteria of pressure convergence vis à vis surface boundary computation. 

Two cases of flow around a cylinder, namely the flat channel bed of the previous study 

(Yulistiyanto, 1997) and the scoured channel bed of the present work (see Chapters 2 and 

3), were subsequently simulated. The validation of the model has been evidenced by the 

good comparison between the model results and the measured data for both cases. This 

was shown notably by the velocity comparison, which was done in several forms such as 

velocity profiles, velocity vectors, and vorticities. For the scoured channel-bed case, an 

attempt was also made to evaluate the computed turbulent kinetic energy. Except in the 

downstream of the cylinder, the computed values compare favorably with the measured 

ones. A good comparison of the computed and measured water surface profiles was 

achieved, with the exception in regions of strong pressure gradient. An improvement of 

the surface boundary treatment, i.e. by enforcing kinematic condition, is proposed at the 

end of the chapter.

Résumé 

Un modèle mathématique tridimensionnel de l’écoulement en surface libre a été présenté 

dans le chapitre précédent (voir Chapitre 4). Ce modèle a été testé pour un écoulement 

uniforme. Il a été ensuite appliqué pour simuler deux cas d’écoulements autour d’un 

cylindre soit dans un canal à fond plat et dans une fosse d’érosion (affouillement) 

supposée rigide. Les résultats des calculs ont pu être comparés avec les mesures. Le 

modèle est satisfaisant, les calculs correspondent aux mesures. Le modèle produit un 

champ de vitesses autour du cylindre qui concorde avec les mesures. Le profil de la 

surface est moins satisfaisant, le modèle ayant sous-estimé la profondeur de l’eau dans le 

plan normal de l’écoulement. Une proposition d’amélioration de calcul de la surface libre 

est abordée à la fin du chapitre. 
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5.1 Introduction 

The numerical model presented in the preceding chapter (Chapter 4) shall be used to 

simulate flow around a cylinder. Two cases of flow around a cylinder were considered, 

namely flat channel bed and scoured channel bed. The first case was the object of 

experimental and numerical investigations of the previous study (Yulistiyanto, 1997), 

whereas the second case was experimentally investigated in the present study (see 

Chapters 2 and 3). In both studies, the experimental investigations were performed by 3D 

instantaneous velocity measurements using an acoustic Doppler profiler. The 

experimental data thus obtained allow detailed comparisons of the simulation results to 

be performed, not only for the velocity fields but also for the turbulence quantities. In the 

previous numerical work (Yulistiyanto, 1997), a 2D model was used thus restricting the 

comparison to the depth-averaged velocity fields. Nevertheless, the result of this 2D 

model was promising and encouraged the 3D model development. 

The model has various constants, such as those in the k- transport equations (c, c1, c2, 

k, and ) and the ones of the logarithmic velocity law ( and ks). In the present model, 

the k- model constants (see Table 4.1 in Chapter 4) and the Karman constant ( = 0.4) 

are invariant and are applied to all flow conditions. The equivalent roughness of the wall, 

ks, characterizes the roughness of the physical solid boundaries (the channel wall, the 

cylinder, and especially the channel bed). It is the only “physical link” of the model to the 

roughness characteristics of solid boundaries. In order to obtain the correct model-value 

of ks, a calibration had to be performed. Using a uniform flow condition (with neither the 

cylinder nor the scour hole), various ks-values were tested to obtain the best match 

between the computed and measured flow fields. In the calibration run, adjustment of the 

uniform flow depth (which will be the approaching flow depth) was also accordingly 

needed. 

Before performing the simulation of flow around a cylinder, which is a highly complex 

3D flow, a series of test runs were carried out for the simple uniform flow case. The test 

runs were aimed at investigating the basic performance of the model and verifying some 

computational techniques adopted in the model. This simple well-known flow condition 

was the best tool to serve this purpose. The experimental data for the comparison were 

taken from the same preceding work (Yulistiyanto, 1997). 

The computer code of the model is written in FORTRAN-77. All simulation runs were 

executed on a personal computer. The computational CPU time of the simulation run is 

typically 70 to 100 hours. 
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5.2 Experimental data 

5.2.1 Flow around a cylinder on a flat channel bed 

The measured data of flow around a cylinder on a flat channel bed are obtained from the 

previous work (Yulistiyanto, 1997). The data were produced from the measurements with 

and without the cylinder in place. Given below is a brief description of the data; details of 

the measurements and of the data can be found elsewhere (see Yulistiyanto, 1997). 

The measurements were conducted in a rectangular metal-bed (smooth) tilting flume of 

an effective length L = 38 [m] and width B = 2 [m]. The uniform approach flow was 

established by: discharge Q = 0.250 [m3/s] (Q B  0.125 [m
2

s]), flow depth 

h∞ = 18.5 [cm] (B h  10.8), cross-sectional-averaged velocity U∞ = 0.67 [m/s] 

(Re = 123,950 and Fr = 0.5), and bed slope So = 6.2510
-4

. An acoustic Doppler 

velocity profiler (ADVP), designed and conceived at LRH (see Lhermitte and Lemmin, 

1994), was used to measure the instantaneous velocity vector. This non-intrusive 

instrument measures instantaneously three-dimensional velocities at a number of layers 

(in 5 [mm] intervals) within a water column (flow depth) based on the Doppler shift of 

the backscattered acoustic signals. The ADVP was fixed at a compartment located below 

the metal bed, at the center line, xL = 16 [m] from the entrance. A Mylar film, permeable 

to acoustic waves, was used to separate the instrument compartment and the flow. A PVC 

circular cylinder of diameter Dp = 22 [cm] (B Dp  9 ) was installed vertically with 

respect to the bed. The cylinder was attached to a movable carriage, allowing it to be 

positioned at predetermined measurement stations around the ADVP. Vertical 

distributions of 3D instantaneous velocities were obtained in five planes,  = 0°, 45°, 

90°, 157.5°, and 180°. The vertical distributions of the time-averaged velocities, (u,v,w), 

turbulence intensities, ( u u , v v , w w ), and the Reynolds stresses, ( u w , 

 v w ), were subsequently deduced. 

From the measurement in the uniform flow condition (the flow without the cylinder in 

place), an equivalent roughness of ks  0.54 [mm] was reported (Yulistiyanto, 1997). 

This value was obtained by using the Colebroke-White equation. A reavaluation of the ks 

by imposing a logarithmic distribution to the measured u-velocity profile, u(z), shows an 

equivalent roughness of ks  0.85 [mm]. Since the present mathematical model uses ks  

as the input parameter in the wall boundary treatment, its value shall be calibrated to get 

the suitable model value. 

5.2.2 Flow around a cylinder in a scoured channel bed 

Measured data of flow around a cylinder in a scoured channel bed are available from the 

laboratory measurement presented in the previous chapter (see Chapter 2). A brief 

description of the experimental work is recalled in the following paragraph. 

The experiment was conducted in a rectangular channel of length L = 29 [m] and width 

B = 2.45 [m]. The channel bed is made of uniform sand of mean diameter 
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d50  2.1[mm]. The cylinder, with a diameter of Dp = 15 [cm] (B Dp 16.3), was 

vertically installed at xL  = 11 [m] downstream of the entrance. A nearly uniform 

approach flow (Q  0.2 [m
3

s], U  0.45 [m s], and h  18[cm]) was established and 

can be considered to be two-dimensional (B h  13.6), turbulent (Re = 81,000), and 

subcritical (Fr = 0.34). The velocity measurements were performed at the equilibrium 

scour hole (ds  25 [cm], ds Dp 1.67 ) under a clear-water scour condition. The scour 

hole had been previously established by performing a continuous run of 5 days. The 

scour geometry was mapped by point gauge measurements. The new version of the 

ADVP instrument (see Hurther et al., 1996), which has a finer spatial resolution than the 

one previously used in the flat-bed case, was utilized to get the vertical distribution of the 

instantaneous velocity vector. In all measurements the ADVP was placed at the water 

surface, attached on a moveable carriage. 

5.3 Model calibration of ks and h∞ 

The model has various constants, such as the ones of the k- transport equations (c, c1, 

c2, k, and ) and of the logarithmic law of the wall ( and ks). Except ks, all model 

constants are kept the same as the standard model values for any flow conditions. The 

equivalent roughness, ks, characterizes the roughness of the solid boundary (wall, 

cylinder, bed). Its value depends on the roughness size of this solid boundary. A series of 

preliminary runs using uniform flow conditions, based on the data of measurements 

without the cylinder in place, indicated that the measured values of the equivalent bed 

roughness (ks = 0.54 [mm] for Yulistiyanto data and ks = d50 = 2.1 [mm] for the present 

measurement) did not result in a satisfactory agreement between the computed and 

measured flow fields. For this reason, calibration runs were performed by varying the 

values of ks in the model. The calibrated ks value was selected by matching the vertical 

distributions of the velocity, u(z), eddy viscosity, t(z), and the shear stress per unit mass, 

zx z   , obtained from the computation and the measurements. 

It was found during the runs that the flow depth (h∞ [cm] = 18.5 and 18.0 for Yulistiyanto 

and the present data, respectively) should also be adjusted accordingly.  

5.3.1 Computational domain 

The flow, being essentially 2D, is simulated by a computational domain that represents 

only a slice of the channel (see Fig. 5.1). The quasi 2D computational domain is created 

by taking a 1-cell grid in the y (cross flow) direction representing a 4-[cm] portion (2%) 

of the channel width. The discharge entering the domain is accordingly adjusted to 

maintain the discharge per unit width (Q B [m2/s] = 0.125 and 0.0816 for Yulistiyanto 

and the present data, respectively). The computational domain in the x (streamwise) 

direction is uniformly divided into 500 cells with a step size of x = 4 [cm]. This 

represents a 20-[m] long channel reach, which is about one half of the channel length. In 

the z direction, the flow depth is divided into 22 cells whose heights vary from 4% to 8% 

of the local depth. This discretisation results in 36,144 nodes, of which 1,000 are 
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computational nodes. The other nodes are either boundary (23,044) or dummy (2,100) 

ones (see the definition of node and cell in the preceding chapter). The relatively large 

number of boundary nodes is inevitable for all cell are boundary ones and they can have 

multiple nodes (see inset in Fig. 5.1). 

 

Fig. 5.1  Computational mesh (500 1 22 ) for the model calibration. 

5.3.2 Boundary and initial conditions 

In the calibration runs, both for Yulistiyanto and the present measurements, a cyclic 

inflow-outflow boundary specification was employed. This works by replacing the values 

of the inflow variables (u, v, w, k and ) with those of the outflow variables of the 

preceding iteration, i.e. inf low
n1

 outflow
n

 for   u, v,w,k, , within the quasi-time 

iteration (the n  n 1 iteration, see the preceding chapter). In each replacement, the 

inflow velocities were adjusted in order to maintain the specified discharge 

(Q B [m
2

s] = 0.125 for Yulistiyanto data and 0.0816 for the present measurements). 

The pressure is not included in this cyclic inflow-outflow boundary since the pressure in 

the vicinity of the inflow boundary becomes redundant otherwise. In all calibration runs 

the flow depth in the entire computational domain was kept constant (h = h∞), the water 

surface was assumed as a frictionless (free-slip) boundary, and the side walls were 

considered as symmetry planes. 

The first estimation (initial condition) for the velocity was a uniform distribution, being 

equal to the average velocity, U = q/h. For the pressure fields a hydrostatic distribution 

was assumed. For the turbulence parameters, k and , their initial distributions were 

defined according to k  1.5 0.06U 2  and   c
3 4k

3 2
(0.09h) (see Versteeg and 

Malalasekera, 1995, p. 72) where c = 0.09 is a model constant. 



– 5.6 – 

5.3.3 Calibration results 

The computed flows with different values of the bed equivalent-roughness and the flow 

depth are depicted in Fig. 5.2. Shown are the computed distributions of the velocity, eddy 

viscosity, and the shear stress. The corresponding measured data are also plotted in the 

same figures. Presented in the first figures (Fig. 5.2a-f) are the computed values obtained 

for Yulistiyanto data and in the second figures (Fig. 5.2g-l) are those for the present 

measurements. Note that for the eddy viscosity and the shear stress, different expressions 

were applied to the computed and measured values. For the computed ones, the following 

relations were used: 

t 
computed

 c
k2


,      with c  0.09  is the model constant, and

zx  
computed

 t

u

z

w

x







 (5.1) 

where k, , and the velocity gradients (computed by using finite volume techniques) are 

directly obtained from the mathematical model. For the measured data, the corresponding 

values were obtained by: 

t measured


 u w 

u z  w x

 u w 

u z
,    since  w x << u z ,  and

zx  
measured

  u w 

 (5.2) 

where  u w  and u z  are available from the measurements. 

The computation results using Yulistiyanto data show that the various ks values tested 

hardly shift the velocity (Fig. 5.2a), but they significantly alter the eddy viscosity and the 

shear stress (Fig. 5.2b,c). With the ks values tested, the velocity profiles vary by less than 

10%. On the other hand, the t obtained with different ks values can vary as much as 

0.0002 [m2/s], which is about 40% of the maximum computed . For the bed shear stress 

(per unit mass, zx ), the variation can reach 0.00025 [m2/s2], which is 25% of the 

maximum computed value. Both eddy viscosity and shear stress increase with ks. Unlike 

varying ks, the consequence of varying h∞ is seen more on the velocity (Fig. 5.2d) then 

either on the eddy viscosity (Fig. 5.2e) or on the shear stress (Fig. 5.2f). The velocity 

increases with decreasing h∞. The eddy viscosity hardly changes and the shear stress 

slightly increases with decreasing h∞. From these results, the equivalent roughness 

ks = 0.22 [mm] ( ksu   = 6.6, meaning that the channel bed is hydraulically smooth) and 

the flow depth h∞ = 18.3 [cm] were considered suitable for the Yulistiyanto flow data. 

The calibration of ks and h∞ for the present measurement data (Fig. 5.2g-l) easily found 

h∞ = 17.8 [cm] as the flow depth that results in the best agreement of the computed flow 

field to the measured one. For the bed equivalent roughness, the value of ks = 4.2 [mm]  
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(i) Yulistiyanto data 

 
(ii) Present measurements 

Fig. 5.2  Computed distributions of the velocity, eddy viscosity, and the shear stress 

obtained using various values of ks and h∞ of the calibration run.  

The selected values of ks and h∞ are indicated by the frame. 
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( 2 d50 ) was considered as the one suitable as the model ks-value after evaluating the 

model results using several different ks values. This corresponds to ksu   = 118, which 

signifies that the channel bed is hydraulically rough. 

The calibrated ks and h∞ were subsequently used as the model values for the test runs 

using uniform flow (Sect. 5.4) and also for the simulation of the flow around a cylinder 

on a flat channel bed (Sect. 5.5) and in a scoured channel bed (Sect. 5.6). 

5.4 Test run using uniform flow condition 

5.4.1 Boundary and initial conditions 

Having found the ks and h∞ values for the model, test runs were carried out in which the 

basic performance of the model under uniform flow conditions was examined. The 

uniform flow condition according to Yulistiyanto measurement data was selected as the 

test case. The same quasi 2D flow as in the calibration runs was considered (see Sect. 

5.3.1). 

Using the calibrated values of ks = 0.22 [mm] and h∞ = 18.3 [cm], three test runs using 

different initial and boundary conditions were performed: 

 Test A: the initial flow depth along the channel varies linearly between the inflow 

depth, hinflow = 17.3 [cm], and the outflow depth, houtflow = 18.3 [cm]. The initial 

conditions for the other variables were taken from the results of the calibration run, 

which were linearly adjusted according to the ratio of the local flow-depth. The same 

spatial discretisation as used for the calibration run ( 500 1 22 ) as shown in Fig. 

5.1 was used. This test run is aimed at validating the method of the surface 

computation. Given a variable depth along the channel, the model shall find the 

uniform depth when it converges to the steady-state condition. 

 Test B: uniformly distributed velocity and turbulence parameters were specified at the 

inflow boundary. These values were also used as the initial conditions along the entire 

domain. The initial flow depth was h = h∞ = 18.3 [cm] everywhere. The 

computational domain covers the entire channel reach (38 [m]), but the number of 

cells was kept the same as that of Test A (500 1 22 ). The coordinate system was 

oriented such that the z-axis was vertical. This is different from that of Test A where 

the z-axis was normal to the channel bed. This test run is aimed at verifying the wall 

function implementation. Given a uniformly distributed velocity at the upstream 

boundary, the model shall produce the logarithmic velocity distribution after a certain 

distance away from the entrance. This can be considered as a developing flow 

condition. 

 Test C: this is a run identical to Test B, except that the surface boundary is not 

necessarily updated at every time step (the n-iteration), but only after several time 

steps. The pressure convergence criterion in the time-step iteration was set to 10 [Pa] 
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( p    1 [mm]), but the surface was updated only when the pressure computation 

converges within 0.01 [Pa] ( p    0.001 [mm]) maximum limit. Note that the time 

step in the model is a pseudo time, which is used as iteration step marking the 

progress of the surface computation (see Chapter 4). This test was performed since 

the pressure computation in the previous runs, Test A and B, took a large number of 

iterations to converge while the other variables had not changed considerably within 

these iterations. In such case, it might be beneficial to relax the pressure convergence 

criterion (thus reduces the number of pressure iterations) and let the n-iteration 

continue, but without changing the surface boundary. The surface update was done 

only when the maximum pressure-correction reduces to 0.01 [Pa]. 

5.4.2 Results of the test runs 

Comparison with the experimental data 

To assess the model, the test results were compared to the experimental data, which was 

done for the water surface profile along the channel and the vertical distributions of the 

velocity, eddy viscosity, and shear stress (see Fig. 5.3 and Fig. 5.4). The computed flow 

of Test C is quite similar to that of Test B and thus the comparison with the experimental 

data is not presented. Further evaluation of the computational performance was made by 

inspecting the computational history of some selected variables as the model iterative 

computation marches towards the steady-state solution (see Fig. 5.5 to Fig. 5.7).  

The computed water surface profile for Test A (see Fig. 5.3a) satisfactorily results in a 

uniform flow depth along the channel. For Test B (see Fig. 5.4a), the water surface 

profile shows a decreasing flow depth in the first 7.5-meter reach. Further downstream 

the flow depth gradually increases towards the specified depth of h = 18.30 [cm] at the 

outlet boundary. Within the downstream half channel-reach, x ≥ 20 [m], a nearly uniform 

flow-depth is observed, showing less than 1 [mm] difference between the two ends of this 

channel reach. This proves that the method of the water surface computation is 

applicable. 

The model produces the logarithmic velocity distribution as expected for uniform flows 

(see Fig. 5.3b and Fig. 5.4b). In Test A the logarithmic velocity distribution prevails 

consistently along the computational domain (see Fig. 5.3b). When a uniformly 

distributed velocity is maintained at the inlet boundary (Test B), it gradually develops 

into the logarithmic distribution with increasing distance from the inlet (see Fig. 5.4b). 

After a half reach of the computational domain, x ≥ 19.04 [m], the velocity distribution is 

logarithmic. 

The above results show the applicability of the model. To further validate the model, the 

simulation results are compared to the experimental data. The comparison between the 

simulation and the measurement are made for the vertical distributions of the velocity, 

eddy viscosity, and the shear stress. The computed profiles at x = 19.8 [m] for Test A and 

at x = 19.04 [m] for Test B are compared to the measured ones as shown in Fig. 5.3c and 

Fig. 5.4c, respectively. The following is to be observed: 
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Fig. 5.3  Model test results for Test A (uniform flow with Q B 0.125 [m
2

s],  

h∞ = 18.3 [cm], L = 20 [m], and a logarithmic velocity distribution at the inlet boundary): 

(a) computed water surface along the channel, (b) computed distributions of the velocity 

at selected sections, and (c) comparison between computed and measured distributions of 

the velocity, the eddy viscosity, and the shear stress at the downstream section, 

x = 19.8 [m]. 
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Fig. 5.4  Model test results for Test B (developing flow with Q B 0.125 [m
2

s],  

h∞ = 18.3 [cm], L = 38 [m], and a uniform velocity distribution at the inlet boundary, 

u Q B h): (a) computed water surface along the channel, (b) computed distributions of 

the velocity at selected sections, and (c) comparison between computed and measured 

distributions of the velocity, the eddy viscosity, and the shear stress at half reach of the 

channel, x = 19.04 [m]. 
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 The two test runs, Test A and B, achieve a near perfect agreement between the 

computed and measured velocity distributions. In Test A, the logarithmic velocity 

distribution prevails along the channel. In Test B the development of the velocity 

profile, from a uniform distribution to the logarithmic one, is achieved after half reach 

of the computational domain. The agreement between this computed velocity profile 

and the measured one has confirmed that the wall boundary treatment is appropriately 

implemented in the model. 

 The computed eddy-viscosity profile compares favorably with the measured one. The 

eddy viscosity is zero at the surface, increases with the depth until a maximum value 

at around mid-depth, and decreases towards zero at the bed. 

 The computed shear-stress profiles in Test A and B well agree with the 

measurements. The shear stress is linearly distributed with the depth, being zero at the 

surface and maximum at the bed. 

Computational history of the model variables 

Having obtained a good agreement with the experimental data, the evolution of the flow 

variables during the iterative computation of the model is investigated. This evolution of 

flow variables, as the computation marches towards the steady-state solution, is plotted in 

Fig. 5.5, Fig. 5.6, and Fig. 5.7 for Tests A, B, and C, respectively. Shown are some 

selected flow variables (zsurface, p, u, k, and ) at 5 computational nodes (inlet and outlet 

boundary cells, and at x/L = 0.25, 0.5, 0.75). The plots show that stable computations 

towards the converged solution are observed in all test runs. 

The computational history plots of Test A and B (see Fig. 5.5 and Fig. 5.6), however, 

reveal an interesting behavior of the iteration (the  or m iteration, see Chapter 4) in the 

model. These figures clearly show that the iterations are devoted almost uniquely to the 

pressure computation. When the velocity and the k- have already converged, i.e. their 

values have no longer changed appreciably, the pressure is still changing. This leads to a 

conclusion that the pressure convergence criterion in the -iteration may be loosened. 

However, since the pressure is used as the basis for the water surface computation, this 

strategy would endanger the stability of the latter. To circumvent this problem, two 

different criteria are used for the pressure convergence. The first criterion is loose ( pmax
c

≤ 

10 [Pa], which is equivalent to pmax
c

  ≤ 1 [mm]) for the -iteration and the second one is 

much smaller ( pmax
c

≤ 0.01 [Pa] or pmax
c

  ≤ 0.001 [mm]) for the water surface 

computation. Consequently, the water surface may not be necessarily updated every time 

step. 

With the above strategy, the run of Test B was repeated in Test C. It was found that the 

final result of Test C does not show a significant difference from that of Test B. The 

computational history in these two test runs, of course, is not the same. Fig. 5.7 depicts 

the computational history of certain variables in Test C; this is to be compared to that of 

Test B, Fig. 5.6. Compared to Test B, the computation in Test C, as expected, converges 
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within a greater number of time steps (n iterations) but within a smaller number of - and 

m-iterations. The total number of iterations in Test C (see Fig. 5.7) is considerably less 

than that in Test B (see Fig. 5.6). The two strategies can be equally used for uniform flow 

cases, but as can be seen later for flows around a cylinder, the strategy B does not always 

converge whereas the strategy C does. 

5.4.3 Conclusions 

The numerical model developed previously (see Chapter 4) was tested to simulate a 

simple flow case obtained from the experimental data of approaching uniform flow on a 

smooth bed channel (Yulistiyanto, 1997). The test was done in order to validate the model 

against a simple and well-known flow case. Three test runs using different boundary 

conditions were performed. In Tests A and B, two distinct inlet boundary conditions were 

used, i.e. a logarithmic and a uniform velocity distribution over the depth. In both tests, 

the model performs quite satisfactorily. Comparison to the experimental data shows that 

the agreement between the computed and the measured flow fields are quite satisfactory. 

In Test C, the same boundary conditions as in Test B were used, but the pressure 

convergence criterion and the surface positioning were changed. The convergence 

criterion for the pressure computation was loosened, from 0.1 to 10 [Pa], but the surface 

positioning was done only when the pressure computation shows a maximum pressure 

correction of 0.01 [Pa]. The result of this test shows that this method can speed up the 

computational time compared to Test B. 

In all three runs, a stable computation is observed in the entire computation and a 

convergence towards the steady-state solution is guaranteed. 



– 5.14 – 

 

Fig. 5.5  Computational history of some selected variables during the iterative 

computation of the model. Test A: uniform flow with Q B 0.125 [m
2

s],  

h∞ = 18.3 [cm], L = 20 [m], and a logarithmic velocity distribution is maintained at  

the inlet boundary. 
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Fig. 5.6  Computational history of some selected variables during the iterative 

computation of the model. Test B: developing flow with Q B 0.125 [m
2

s],  

h∞ = 18.3 [cm], L = 38 [m], and a uniform velocity distribution is maintained at  

the inlet boundary, u(z) = Q/B/h. 
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Fig. 5.7  Computational history of some selected variables during the iterative 

computation of the model. Test C: developing flow with Q B 0.125 [m
2

s],  

h∞ = 18.3 [cm], L = 38 [m], a uniform velocity distribution is maintained at  

the inlet boundary, u(z) = Q/B/h, and the water surface is not necessarily updated at 

every time step. 
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5.5 Simulation of flow around a cylinder on a flat channel bed 

5.5.1 Computational domain 

The computational domain covers a longitudinal section of 4 [m] with the cylinder at its 

center. The grid was generated in two steps. Firstly, the Joukowski conformal mapping 

was used to generate an orthogonal horizontal (xy plane) grid. Finer grids are 

concentrated around the cylinder. Secondly, the horizontal grid was repeated in the z 

direction according to a pre-determined interval to cover the entire flow depth. This is 

known as a “sigma stretching” method. The number of cells in the x, y and z directions is 

99 49 22  (see Fig. 5.8). The cylinder is represented as a 311 22 -cell out-blocked 

region. There are thus 106,040 computational nodes, 16,834 boundary nodes, and 750 

dummy nodes. The z distribution of the grid is identical to that of Test A (uniform flow 

simulation) to enable the use of the computed velocity and turbulence profiles of that test 

run as the inflow boundary conditions of this simulation. 

In presenting the results of the simulation and the comparison to the experimental data, 

cylindrical and Cartesian coordinate systems are frequently used together. The origin of 

both coordinates is defined at the center of the cylinder, at the original bed level (see Fig. 

5.9). 

5.5.2 Boundary and initial conditions 

The boundary conditions are as follows: 

 Upstream inflow: Q = 0.250 [m3/s] and prescribed distributions of u,v,w, k,  which 

are taken from the results of Test A. 

 Downstream outflow: h∞ = 18.3 [cm]. 

 Left and right channel (glass) walls: wall boundary with ks = 0 [mm] (hydraulically 

smooth). 

 Channel (metal) bed and cylinder (PVC) boundaries: wall boundary with 

ks = 0.22 [mm] (uks  6.6, hydraulically smooth solid boundaries). 

 Top boundary: water surface. 

The initial conditions over the computational domain are uniform flow depth 

corresponding to the known downstream depth, h∞ = 18.3 [cm], hydrostatic pressure, 

p  gz zsurface z  [Pa], velocity and k- according to the known distributions at the 

inlet section. At early time steps, the water surface was kept constant until the flow field 

was more or less stable. The simulation was then restarted by letting the water surface 

move according to the surface boundary treatment. A similar method of surface updating 

as of Test C in the preceding test run was used. There are two different criteria for the 

pressure computation, namely the one for terminating the pressure computation in the -

iteration ( pmax
c

  10 [Pa], which is equivalent to pmax
c

  ≤ 1 [mm]) and the other for 

updating the surface boundary ( pmax
c

  0.01 [Pa] or pmax
c

  ≤ 0.001 [mm]). 



– 5.18 – 

 

Fig. 5.8  Top view (xy plane) and side view (xz-plane) of the computational mesh 

(99 49 22  cells) for the simulation of flow around a cylinder on a flat channel bed. 

An enlargement is shown for region around the cylinder. 
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Fig. 5.9  Definition sketch of the coordinate system and the vorticity, . 

 

5.5.3 Results of the simulation and comparison to the experimental data 

The evaluation of the results of the numerical simulation (see Chapter 4) is made for the 

velocity fields and the water surface. Herewith they are compared to the experimental 

data (see Chapter 2). Detailed comparison of the 3D velocity profiles in the planes where 

the experimental data are available is first presented (Fig. 5.10). The velocity fields, 

resulted from the simulation and the measurement, are then presented by vector plots 

(Fig. 5.11) and contour plots (Fig. 5.12) in three selected planes,  = 0°, 90°, and 180°, to 

show the general pattern of the flow. Next, the prediction of the flow pattern at the 

bottom corner of the cylinder is highlighted by contour plots of the computed and the 

measured vorticity fields (Fig. 5.13), obtainable from the corresponding 2D velocity 

components in those three planes. Finally, an evaluation is made on the computed water 

surface profile along the longitudinal section of the symmetry plane and along the 

cylinder circumference (Fig. 5.14).

Vertical distribution of the 3D velocity components 

The comparison between the computed and the measured vertical distributions of the 3D 

velocity components are done for some selected profiles. Shown in Fig. 5.10 are 20 

distributions of the 3D velocity components, u(z), v(z), and w(z), in the planes where 

measurements data are available,  = 0°, 45°, 90°, 157.5°, and 180°. Four stations at 

r Dp   1.5, 1, 0.75, and 0.55, being considered representative ones, are selected from 

each plane. It can be seen from the comparison in Fig. 5.10 that the computed velocity 

distributions are in a good agreement with the measured ones, notably in the upstream 

region,  = 0°, 45°, and 90°. The agreement, however, is less evident in the wake region, 
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 = 157.5° and 180°. Observing the comparison in each plane, the following is to be 

remarked: 

 In the plane  = 0°, the good agreement is shown by all velocity components. It is 

particularly interesting to remark that close to the cylinder, r Dp   0.55 , the negative 

values of u-velocity near the bed and w-velocity in the entire depth can be well 

reproduced by the model. This shows that the model is able to simulate the reversed 

flow upstream of the cylinder, eventhough in this particular region and flow condition 

the method of computation adopted in the model is very much approximative (see 

Chapter 4, Sect. 4.5.4, notably that describes the assumptions taken in the wall 

boundary computation). 

 In the plane  = 45°, the good agreement is also shown by all velocity components, as 

in the plane  = 0°. The non-zero (negative) v-velocity component, which indicates 

the flow alteration by the cylinder, can be satisfactorily reproduced by the model. The 

agreement can also be seen in the negative w-velocity (the downward flow). 

 In the plane  = 90°, the computed velocities compare with the measured ones. 

Approching the cylinder, the increasing u-velocity component can also be 

satatisfactorily reproduced by the model. The negative values of v-velocity (flow 

leaving the cylinder) and of w-velocity (downward flow) are in a good agreement. 

 In the plane  = 157.5°, discrepancies are observed showing an under estimation of 

the measured velocities, notably the u- and v-velocity components. The computed and 

measured u-velocity profiles, nevertheless, have a similar pattern: both exhibit a 

positive under current in the lower half-depth and an opposite current in the upper 

half-depth. In addition, it could be that the discrepancy is more in the flow direction 

than in its magnitude. If one considers the resultant of the u- and v-velocity 

components, the difference between the computed and measured values may not be 

too far. 

 In the plane  = 180°, a similar picture as in the plane  = 157.5°, but with a smaller 

discrepancy, is observed. Nonetheless, the computed and measured u-velocity 

profiles, notably at r Dp  = 3 and 1, exhibit a similar pattern showing positive values 

in the lower depth (leaving the cylinder) and negative values (towards the cylinder) in 

the upper depth. Moreover, the model and the measurements show similar non-zero 

v-velocities at these two stations, indicating a horizontal momentum exchange across 

the plane. 
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Fig. 5.10  Computed (lines) and measured (symbols) velocity distributions,  

u(z), v(z), w(z), at some selected stations around the cylinder. 

Flow around a cylinder on a flat channel bed. 
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Velocity fields around the cylinder 

Further evaluation of the simulation results can be made by presenting the computed 

velocity fields in a vector form projected on vertical planes around the cylinder. Fig. 5.11 

shows these velocity vector plots, V ur,w , in the planes  = 0°, 90°, and 180°. Note 

that for clarity purpose, only selected computed velocity vectors are drawn. Shown also 

in the same figure are the ones obtained from the experimental data. The radial velocity 

component, u r , can be obtained from the u and v components according to the 

geometrical relation given in Fig. 5.9. 

The comparison shown in Fig. 5.11 has demonstrated the good reproduction of the flow 

field by the model. A good agreement of the computed and measured flow patterns, at 

least qualitatively, is clearly ascertained. A good quantitative agreement, to some extent, 

is also achieved. This is demonstrated in the following figure (Fig. 5.12). The figure 

shows the contour plot of the flow intensity in the same planes,  = 0°, 90°, and 180°, as 

in the preceding figure (Fig. 5.11). The flow intensity is expressed by 

V U  u
2
 v

2
w

2
U , where U  0.68 [m s] is the approach flow velocity. The 

resemblance of the computed and the measured flow intensities is observed, except at 

close to the surface in the plane  = 90°. The discrepancy at this region, however, is 

likely due to the scattered measured data, as seen also in the vector plots (Fig. 5.11). In 

the plane  = 180°, where the flow is typically complex, a good agreement between the 

computed and measured flow intensity plots can be achieved.

The vector and isoline contour plots of the flow pattern given in Fig. 5.11 and Fig. 5.12 

allow one to observe the flow behavior as it interacts with the cylinder. This is described 

as follows:

 In the plane  = 0°, the unidirectional flow coming towards the cylinder becomes 

increasingly two-directional (Fig. 5.11a,b) and its intensity decreases (Fig. 5.12a,b). 

Close to the cylinder, a downward velocity develops whose intensity increases with 

the depth and reaches a maximum value of 0.3U∞ at z ≈ 2 [cm]. At the bed, this 

downward velocity is deflected toward upstream (Fig. 5.11a,b), forming a reversed 

flow with an intensity of 0.2U∞ (Fig. 5.12a,b). This reversed flow encounters the 

incoming flow and a separation takes place. A visual observation to Fig. 5.11a,b 

indicate that the separation starts at r ≈ 17 [cm] according to the model and at 

r = 19.7 [cm] according to the measurements (see Graf and Yulistiyanto, 1998). 

 In the plane  = 90°, the velocity vector, V ur,w , is directed away from the 

cylinder, particularly at the surface (Fig. 5.11c,d), with a decreasing intensity as one 

moves away from the cylinder (Fig. 5.12c,d). The radiating flow represents the 

skewness of the approaching flow when it passes the cylinder. The flow intensity 

close to the cylinder is 1.4U∞ from the simulation and is slightly higher, 1.6U∞, from 

the measurement. On the other hand, at the upper corner between the cylinder and the 

surface, the simulation indicates a slightly higher intensity, being 1.4U∞ compared to 
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Fig. 5.11 Computed and measured velocity vectors, V ur,w ,  
in the planes  = 0°, 90°, 180°. 

Flow around a cylinder on a flat channel bed. 
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Fig. 5.12  Computed and measured velocity contours, in the planes  = 0°, 90°, 180°. 

The data are normalized by the velocity in the approach flow, V U ,  

where V  u
2
 v

2
w

2
 and U∞ = 0.45 [m/s]. 

Flow around a cylinder on a flat channel bed.
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1.2U∞ of the measurement. Note that the vector plot of the measured velocity at this 

corner indicates some scattered data as has also been mentioned in the preceding 

section. 

 In the plane  = 180°, both the simulation and the measurement exhibit a counter 

rotating flow towards the surface (Fig. 5.11e,f). Except close to the bed, the 

intensities of the rotating flow obtained by the simulation and measurement are quite 

comparable (Fig. 5.12e,f). Immediately behind the cylinder, the agreement is quite 

satisfactory. Leaving the cylinder, the rotating flow diminishes and the flow returns 

back to the unidirectional flow condition. 

Vorticity fields in the bottom corner around the cylinder 

Another way of observing the flow around a cylinder is to use the vorticity fields whose 

component in a vertical plane  is defined by (Graf and Yulistiyanto, 1998):

 
w

r

ur

z
 (5.3) 

in which the velocity gradients are obtained by using finite volume techniques (see 

Chapter 4) for the computed data and by using central finite difference for the measured 

data. It must be emphasized, however, that the vorticity is highly sensitive to the quality 

and quantity of the measured data points. The measured vorticity fields thus have to be 

interpreted with caution. 

Shown in Fig. 5.13 are the contour plots of the vorticity fields in the planes  = 0°, 90°, 

and 180° obtained from the simulation and the measurement. Only the bottom corner 

region, where the vorticity is of importance, is presented. The following is to be 

remarked: 

 Upstream of the cylinder, in the plane  = 0°, a qualitative agreement is observed 

between the computed and measured vorticity fields, notably the negative vorticities 

formed by the downward flow close to the cylinder. A qualitative, bot not 

quantitative, agreement is also observed by the positive vorticity fields in the bottom 

corner of the cylinder formed by the downward flow and the reversed flow. The 

strong concentrated vorticity shown by the measurements, however, cannot be 

captured.

 On the side of the cylinder, in the plane  = 90°, the agreement is less evident, apart 

from the negative vorticity region close to the bed. This negative vorticity is formed 

by the radiating flow away from the cylinder as has been mentioned in the preceding 

section. There is also a negative vorticity region along the cylinder, produced by the 

downward flow. The strong positive vorticity at z = 2 [cm], which is shown by the 

measured fields, cannot be reproduced by the simulation.
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 Downstream of the cylinder, in the plane  = 180°, a similar observation as in the 

plane  = 90° can be observed. The agreement between the computed and measured 

vorticities is only shown by the negative fields along the bottom. Above the bed, 

z > 1 [cm], there is almost nothing can be observed. Some scattered positive 

vorticities shown by the measured values are certainly due to the velocitiy data 

irregularities as can be seen in the vector plot (see Fig. 5.11). 

 

 

Fig. 5.13  Computed and measured vorticity fields, , in the planes  = 0°, 90°, 180°. 

The shaded area indicates regions of negative vorticity fields. 

Flow around a cylinder on a flat channel bed. 
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Water-surface profile 

The computed and the measured water surface profiles along the longitudinal section and 

along the cylinder circumference are shown in Fig. 5.14. The profiles are made 

dimensionless using the approach flow depth, h , and the cylinder diameter, Dp, as the 

scaling factors for the z and x directions, respectively. The following remarks are put 

forward on the comparison of the water surface: 

 Upstream of the cylinder the computed water surface tends to be slightly above the 

measured profile. However, the bow wave in front of the cylinder, due to the 

stagnation pressure, is quite well reproduced. The simulation gives a relative increase, 

(h  h) h , of 12.2% compared to 12.7% obtained from the measurement. 

 

Fig. 5.14  Computed (line) and measured (symbols) water-surface profiles along the 

longitudinal section and the cylinder circumference. 

Flow around a cylinder on a flat channel bed. 

 Along the upstream circumference of the cylinder, an under-estimation of the water 

surface is observed; the maximum depression, (h  h) h , is computed as 23% 

while it is measured as 11%. This rather strong is most likely due to the presence of a 

strong pressure-gradient along the cylinder circumference. The high (stagnation) 

pressure upstream of the cylinder,  = 0°, is accelerating the flow not only towards 

the bed (the downward flow), but also towards the downstream along the cylinder 

circumference (in the angular direction, ). Consequently, there is a steep water 

surface along this circumference. The method of the surface boundary positioning, 

which is based on the pressure (see Chapter 4), evidently becomes less accurate when 

being confronted with such situation. The inaccuracy can be explained by the fact 

that: (1) the surface pressure is not directly obtained from the computation but from 

an extrapolation (by assuming a hydrostatic distribution) of the pressure at the cell 

center just below the surface, and (2) this surface pressure, defined at the center of the 

top face, is linearly distributed to the vertices of the top face with which the vertices 
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are moved to define the surface position. These procedures clearly imply 

computational simplification and approximation. Another method of surface 

positioning, which is based on the application of kinematic boundary condition along 

the surface, is discussed in Sect. 5.8. 

 Downstream of the cylinder, an over-estimation of the computed water surface is 

observed. Here also, a rather steep surface profile prevails, in which the high velocity 

(low flow-depth) in the plane  = 90° is readapting to the lower velocity (higher 

flow-depth) in the wake of the cylinder. Again, the method of surface positioning has 

certainly a low accuracy. In the scoured-bed case (see the next section), a similar 

over-prediction occurs; another interpretation of this problem, which attempts to 

relate it to the production of the turbulent kinetic-energy, will be discussed (see Sect. 

5.6.3). One expects that the disagreement of the water surface should disappear at a 

distance further downstream away from the cylinder. Unfortunately, the limited 

measured data do not allow such control. In the scoured channel bed case, it will be 

seen that the measured water surface further downstream returns back to the one of 

the approach flow. 

5.5.4 Conclusions 

The numerical model (see Chapter 4), conclusively, has demonstrated its applicability 

and ability to simulate flow around a cylinder on a flat channel bed. Detailed comparison 

of the computed velocity fields to the measured ones (see Fig. 5.10) shows satisfactory 

agreements. The downward and reversed flows upstream of the cylinder and the rotating 

flow downstream of the cylinder can be reproduced by the model (see Fig. 5.11 and Fig. 

5.12). A qualitative agreement is also seen from the vorticity fields (see Fig. 5.13). The 

model, however, shows a rather disagreement of the water-surface profile, notably along 

the cylinder circumference and behind the cylinder. A good agreement, nevertheless, is 

seen along the upstream water surface, including the bow wave at the cylinder upstream 

face (see Fig. 5.14). The method of surface boundary positioning, in fact, becomes less 

accurate in regions of a strong pressure gradient. 

5.6 Simulation of flow around a cylinder in a scoured channel bed 

5.6.1 Computational domain 

The computational domain covers a 5-[m] channel-reach with the cylinder at 2.5 [m] 

from the upstream boundary (see Fig. 5.15). The origin of the coordinate system is 

defined at the center of the cylinder, at the original uneroded channel bed. The flow is 

assumed to be symmetrical about the channel centerline and, therefore, the computational 

domain represents half of the channel with a symmetry plane on the left (north) 

boundary, y = 0. The grid is formed by 109  43 22 cells in the x, y and z directions, 

respectively. There are 103,114 computational nodes, 16,062 boundary nodes, and 704 

dummy nodes. The grid was generated by the same method as in the flat-bed case, i.e. by 
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using a Joukowski transformation to construct the xy-grid, and by stretching this grid in 

the z direction to form the xyz control-volume grid. The grid sizes in the x and y 

directions vary between 0.11 to 12 [cm] and 0.5 to 8 [cm]; in the z direction, the grid 

sizes are 4% to 8% of the local flow-depth. To generate the bed level of the 

computational domain, the elevations of the bottom cell vertices were interpolated from a 

5 5-[mm2] uniform bed-level grid. This grid was constructed based on the measured 

bed-level data obtained by point gauge measurements. Fig. 5.15 illustrates the xy and xz 

grids at an intermediate solution of the simulation. 

5.6.2 Boundary and initial conditions 

There are five boundary conditions in this run, i.e. inflow, outflow, symmetry, wall, and 

surface boundaries. These are all boundary-condition types that can be handled by the 

present model. 

 Upstream inflow, x = –2.5 [m]: Q 2  0.1[m
3

s] and u, v, w, k,  are available from 

the measurement in the approach flow region (see Chapter 2). The values of  are 

obtained by   ck
2
t  (see Eq. 5.1), where the eddy viscosity, t , and the kinetic 

energy, k, are obtainable from the measured velocities (see also Eq. 5.2) such as 

t   u w u z   and  k  1
2 u u  v v  w w  . 

 Downstream outflow, x = 2.5 [m]: constant surface elevation, which corresponds to 

the depth of the uniform approach flow, h = 17.8 [cm]. 

 Left (north) boundary, y = 0: wall boundary along the cylinder (persplex glass), 

BC C B , (–0.75 ≤ x [m] ≤ 0.75) with ks = 0.22 [mm] and symmetry plane along the 

rest, AB B A  and CD D C . 

 Right (south) boundary, y = –1.225 [m]: wall boundary along the channel glass side-

wall with ks = 0 [mm]. 

 Bottom boundary: wall boundary along the channel uniform-sand bed with 

ks = 2d50 = 4.2 [mm] (see Sect. 5.3.3). 

 Top boundary: water surface. 

The initial conditions of the simulation are horizontal flow depth corresponding to the 

known uniform flow depth (h∞ = 17.8 [cm]), hydrostatic pressure distribution, 

p  gz zsurface z  [Pa], velocity and k- according to the known distributions at the 

inlet boundary. Within the initial stage, as in the simulation of the flat-bed case, the water 

surface was kept constant until the flow field was more or less constant. The simulation 

was then restarted and the water surface was let to move following the surface boundary 

treatment, except at the downstream boundary. 
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Fig. 5.15  Top view (xy plane) and side view (xz plane) of the computational mesh 

(109  43 22 cells) for the simulation of flow around a cylinder in a scoured channel 

bed. An enlargement is shown for the region close to the cylinder. 
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5.6.3 Results of the simulation and comparison to the experimental data 

The results of the simulation, as in the flat-bed case, are evaluated and compared to the 

experimental data for the velocity fields (see Fig. 5.16 to Fig. 5.19) and the water surface 

(see Fig. 5.23). In addition, a comparison of the turbulent kinetic energy, k, obtained from 

the simulation and the measurement, is also presented (see Fig. 5.20). An attempt is also 

made to evaluate the computed production and dissipation of the turbulence kinetic 

energy, G and  (see Fig. 5.21. A comparison with the measured data for these variables, 

however, is not elaborated since the data density does not allow all terms in the equation 

of G (see Chapter 4) to be obtained. 

Vertical distribution of the 3D velocity components 

Detailed comparisons of the computed and measured 3D velocity components are 

presented in Fig. 5.16 for some selected profiles, being representative ones, at the 5 

planes around the cylinder,  = 0°, 45°, 90°, 135°, and 180°. Shown are the vertical 

distributions of the velocities, u(z), v(z), and w(z), at stations r Dp   3, 2, 1, and 0.67. 

The following is to be observed:

 Outside the scour hole, r Dp   3, and still away from the cylinder, the agreement is 

quite satisfactory for all three velocity components. In the scour hole, r Dp  3, the 

agreement is qualitatively good, showing a close trend of the velocity profiles. Some 

disagreements are observed, but these are rather weak, which are commonly seen as a 

smoothened out of the profiles. 

 The u-velocity component in general is well reproduced, showing a diminishing 

velocity approaching the cylinder. At r Dp  = 2 and 1, however, the computed u 

profiles seems to be smoothened out, notably at around z = –5 [cm]. Nevertheless the 

negative u-velocity at r Dp  = 1 and 0.67 in the planes  = 0° and 45°, which shows a 

reversed flow, is reasonably reproduced. 

 The v-velocity component is in general the smallest component every where, except 

in the plane  = 45° at r Dp  ≤ 1 and close to the surface. A reasonably good 

agreement of this velocity component is observed. 

 The w-velocity component manifests itself as a downward flow (negative w) in all 

planes but  = 180°. A reasonably good agreement of the downward velocity is 

noticeable, showing an increasing value approaching the cylinder; the maximum 

downward velocity according to the model, however, is found at a somewhat lower z 

than according to the measurements. Behind the cylinder, in the plane  = 180°, the 

upward velocity (positive w) is also reasonably computed. 
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Fig. 5.16  Computed (lines) and measured (symbols) velocity distributions,  

u(z), v(z), w(z), at some selected stations around the cylinder 

Flow around a cylinder in a scoured channel bed. 
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Velocity fields around the cylinder 

A more detailed observation of the flow pattern around the cylinder can be facilitated by 

plots of velocity vector and flow intensity contour, given in Fig. 5.17 and Fig. 5.18. The 

plots show the velocity vector, V ur,w , and the flow intensity, V U  

(V  u
2
 v

2
w

2
 and U  0.45 [m s]), in the planes  = 0°, 90°, and 180°. Note that 

for clarity purposes, not all but only some selected computed velocity vectors, being 

representative ones, are drawn. Shown also in the same figures are the ones obtained 

from the experimental data. 

Comparing the computed and the measured velocity fields shown in the two plots, it is 

evident that the two closely resemble. As in the flat-bed case, the model here also has 

proven its applicability to this highly 3D flow. Further remarks can be put forward from 

the plots in each of the three planes: 

 In the plane  = 0° (Fig. 5.17a,b and Fig. 5.18a,b), the unidirectional incoming flow 

is decelerating and deflecting towards the bed upon entering the scour hole. Close to 

the cylinder, the down-deflected flow becomes more pronounced and develops into a 

downward flow along the cylinder face. The stagnation pressure stimulates the 

downward flow, which is strengthening with increasing depth (decreasing z) and 

diminishing close to the bed, where the flow turns to the upstream direction along the 

bed. This reversed flow diminishes as it moves away from the cylinder and eventually 

joins the downstream facing upper flow. These downward and the reversed flows can 

be reasonably well captured by the model; the maximum computed downward flow, 

0.5U∞, is slightly weaker than the measured one, 0.6U∞, but the computed reversed 

flow is comparable with the measured one, being both indicate an intensity of 0.2U∞ 

(Fig. 5.18a,b). Note that the measurements show a strong reversed flow concentrated 

in a small region at the bottom corner of the cylinder, which the simulation cannot 

capture due to the limited spatial resolution of the grid. 

 In the plane  = 90° (Fig. 5.17c,d and Fig. 5.18c,d), both simulation and 

measurement show negligible radial and vertical velocity components as indicated by 

the vector plot (Fig. 5.17c,d). The contour plot (Fig. 5.18c,d) reveals, on the other 

hand, a comparable flow intensity as in the plane  = 0°. This shows that the flow is 

mainly directed towards downstream tangentially to the cylinder and that the lateral 

skewness of the approaching flow is negligible. 

 In the plane  = 180° (Fig. 5.17e,f and Fig. 5.18e,f), close to the cylinder the velocity 

is weak, 0.1 to 0.3U∞, and is directly upward towards the surface, where it turns 

upstream towards to the cylinder. Further downstream away from the cylinder, the 

flow is gradually increasing and returning to the approach flow condition.  The close 

resemblance of the computed flow with the measured one is in fact a rather surprising 

since the flow behind the cylinder is a complex one. 
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Fig. 5.17  Computed and measured velocity vectors, V ur,w ,  
in the planes  = 0°, 90°, 180°. 

Flow around a cylinder in a scoured channel bed. 
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Fig. 5.18  Computed and measured velocity contours in the planes  = 0°, 90°, 180°.  

The data are normalized by the velocity of the approach flow, V U , where 

V  u
2
 v

2
w

2
 and U  0.45 [m s]. 

Flow around a cylinder in a scoured channel bed. 
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Vorticity fields in the scour hole 

As in the flat-bed case, the vorticity fields were computed from the radial and vertical 

velocity components and are presented in Fig. 5.19. Shown in this figure are the vorticity 

contours obtained from the simulation and the measurement. While the vorticity was 

computed using all data points, shown here are the contours in the region of important 

vorticity, r ≤ 60 [cm] and z ≤ 5 [cm]. The following is to be remarked: 

 

Fig. 5.19  Computed and measured vorticity fields, , in the planes  = 0°, 90°, 180°. 

The shaded area indicates regions of negative vorticity fields. 

Flow around a cylinder in a scoured channel bed. 

 In the plane  = 0° (Fig. 5.19a,b), a qualitative agreement on the general patterns of 

the vorticity field in the scour hole is achieved, being the characterized by a strong 

positive vorticities in the upstream inclined bed and a negative ones at about 

r = 30 [cm]. Quantitatively, though, the computed vorticity everywhere is weaker 
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than the measured one. The strong vorticity peaks (positive and negative ones) in the 

bottom corner of the cylinder are missed by the simulation. This is due, as has been 

mentioned in the preceding section, to the inability of the simulation to reproduce the 

strong reversed flow at this location, which is caused by the limited spatial resolution 

of the grid. 

 In the plane  = 90° (Fig. 5.19c,d), the vorticity fields show small activity since the 

velocity components on this plane are very small as shown in the preceding section. 

Nevertheless, the contour plot near the bed indicates a reasonable agreement between 

the simulation and the measurement. 

 In the plane  = 180° (Fig. 5.19e,f), the simulation and the measurement exhibit 

surprisingly a good agreement. The vorticity, being rather small, is distributed more 

or less evenly over the plane and there is no region of concentrated vorticity. 

Turbulent kinetic energy around the cylinder 

Discussed in this section is the turbulent kinetic energy computed by the model. The 

computed turbulent kinetic energy is presented as an equivalent height (energy per unit 

weight), k g  [mm], as shown in Fig. 5.20. For the sake of comparison, plotted also in the 

same figure are the values obtained from the experimental data; here the turbulent kinetic 

energy is obtained by k  1
2 u u  v v  w w   (see Chapter 3). The figures allow the 

following remarks: 

 The plots show that the comparison of the computed and measured turbulent kinetic 

energy can be considered good. The simulation results in a lower energy than the 

measurement, but the tendency of the overall distributions is rather well predicted. 

 In the plane  = 0° (Fig. 5.20a,b), both simulation and measurement show high 

energy concentrations in the bottom corner of the cylinder. The computed maximum 

value shown at the corner vicinity of the cylinder, however, is considerably lower 

than the measured one. This is consistent with the difference observed between the 

computed and the measured velocities (and vorticities) at this particular location as 

discussed in the preceding sections. From the simulation, the high energy is also 

observed almost along the entire depth at close vicinity of the cylinder. Unfortunately, 

measurements in this region are not available along the entire depth.  

 In the plane  = 90° (Fig. 5.20c,d) similar observations as in the plane  = 0° can be 

made, but the simulation at the bottom corner of the cylinder is better, showing a 

close comparison to the measured data.  

 In the plane  = 180° (Fig. 5.20e,f) the simulation and the measurement show a 

similar pattern, but the under-estimation of the kinetic energy is also considerable as 

in the plane  = 0°. 
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Fig. 5.20  Computed and measured turbulent kinetic energy, k g ,  

in the planes  = 0°, 90°, 180°. 

Flow around a cylinder in a scoured channel bed.
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Production and dissipation of the turbulent kinetic energy around the cylinder 

Turbulent kinetic energy, k, is extracted from the mean flow through the interaction of 

the turbulent shear (Reynolds stress,  u i u j ) and the mean shear, u i x j . This process is 

represented by the turbulent kinetic-energy production term, G (see Chapter 4). Due to 

the effect of viscosity, the turbulent kinetic energy is dissipated, which is quantified by 

the dissipation rate, . The turbulent kinetic energy is transported by the flow through 

convective-diffusive mechanisms. To render the observation of this turbulent kinetic 

energy possible, contour plots of G and  in the planes  = 0°, 90°, and 180° are drawn 

and presented in Fig. 5.21. Only the computed results are evaluated since the data from 

the measurements do not allow all terms of the G expression (see Chapter 4) to be 

obtained. This figure reveals some interesting points as follow: 

 Large production of the turbulent kinetic energy is always accompanied by a large 

dissipation (Fig. 5.21). This is expected since the source terms of the -equation are 

closely linked (and proportional) to the production and dissipation terms (the source 

terms) of the k-equation (see Chapter 4). The situation is also true in the opposite 

direction; diminishing production will be accompanied by diminishing destruction.

 In the upstream planes,  = 0° and 90° (Fig. 5.21a,b,c,d), a large production of the 

turbulent kinetic energy takes place close to the cylinder, at an elevation of about 

z = 10 [cm]. This production diminishes with the depth and it remains 20% of the 

maximum value at the bottom corner of the cylinder. From the plot of the turbulent 

kinetic energy presented in the preceding section (see Fig. 5.20), it can be seen that 

the zone of large production corresponds to the high turbulent kinetic energy. 

However, at the bottom corner, the turbulent kinetic energy is still high, whereas the 

production (and of course the dissipation) has become small. This means that the 

turbulent kinetic energy produced at the upper layer is transported towards the bed, 

here by the downward flow.

 Downstream of the cylinder, in the plane  = 180° (Fig. 5.21e,f), the production of 

the turbulent kinetic energy is smaller than that in the upstream planes. The turbulent 

kinetic energy, however, is comparable with that in the upstream planes,  = 0° and 

90° (see Fig. 5.20). Again, it can be implied that this energy, besides from the local 

production, receives a contribution from other places, presumably from the upstream 

planes.
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Fig. 5.21  Computed production and dissipation of the turbulent kinetic energy,  

G and , in the planes  = 0°, 90°, 180°. 

Flow around a cylinder in a scoured channel bed.
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Production of turbulent kinetic energy along cylinder boundaries 

It has been observed that the computed turbulent kinetic-energy close to the cylinder is 

below the measured values. This might be caused by a computational inaccuracy of its 

production, due to an inherent difficulty related to the method of wall boundary 

treatment. The computation of the production of turbulent kinetic energy along the 

cylinder (wall) boundaries is done with a simplification, in which, among others, the 

production due to the normal stress is neglected (see Eqs. 4.75a,b in Chapter 4). This 

simplification is in conjunction with the wall function method applied to wall boundaries. 

This method assumes that the velocity at nodes adjacent to the boundary is parallel to the 

wall and is, between the wall and the adjacent node, distributed logarithmically. It has 

been pointed out in the previous chapter that this is a rather rough approximation at the 

cylinder boundaries. At such boundaries, the measured tangential and normal velocities, 

notably in front of the cylinder, have the same order of magnitude. This is observed also 

by the simulation (see Fig. 5.17a,e). 

To render further insight into this problem, the computation of the production of turbulent 

kinetic energy upstream and downstream of the cylinder is elaborated and presented in 

Fig. 5.22. Shown in the figure are the computed tangential and normal velocity 

components (Fig. 5.22a,b,c). Obviously, the normal velocities are not negligible. 

Accordingly, neither the normal stresses are negligible compared to the tangential 

components (Fig. 5.22d,e). The equation of the production of turbulent kinetic energy 

written for wall boundaries is (see Eq. 4.75a in Chapter 4): 

G 
nt



Vt

n

nn



Vn

n
 (4.75a) 

where subscripts n and t are the normal and tangential directions, respectively. In the wall 

function, the universal logarithmic velocity distribution is applied to the tangential 

velocity. The tangential velocity gradient in Eq. 4.75a is obtained from this logarithmic 

distribution. The production of turbulent kinetic energy due to the normal stress is simply 

neglected. The production, G, is therefore computed by (see Eqs. 4.75b in Chapter 4): 

G 
nt



Vt

n
 (4.75b) 

which is plotted by solid lines in Fig. 5.22f,g. It was mentioned previously that this 

production was not sufficient to generate the turbulent kinetic energy. The simulation 

under-estimates the experimental values. 

Now suppose that, in the absence of knowledge on the normal velocity distribution, we 

assume a linear distribution of the normal velocities between the wall and the adjacent 

node. We subsequently use this linear distribution to obtain the normal velocity gradient 

and the normal stress in Eq. 4.75a. The production term thus obtained is shown by point-

dashed lines in Fig. 5.22f,g. Evidently the production increases notably in front of the 

cylinder (Fig. 5.22f). There is also an increase, although not much, of the production of 

turbulent kinetic energy downstream of the cylinder (Fig. 5.22g). 
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Fig. 5.22  Computation of the production of turbulent kinetic energy along the upstream 

and downstream faces of the cylinder. 
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If the above approach were used, the kinetic energy would likely increase that could 

make up its deficiency shown by the present model. It should be noted, however, that the 

method presented here is not yet readily compatible with the wall function method used 

in the model. If the normal velocity was to be taken into account in the production term, 

it would have also to be incorporated in the wall function method. This is not a straight 

forward task and, therefore, is not elaborated further in the present work. 

Water surface profile 

The computed and the measured water surface profiles are plotted together in Fig. 5.23. 

Shown in the figure are the surface profiles along the longitudinal section through the 

cylinder and along the cylinder circumference. From this comparison, the following can 

be observed: 

 

Fig. 5.23  Computed (line) and measured (symbols) water surface profiles along the 

longitudinal section and the cylinder circumference. 

Flow around a cylinder in a scoured channel bed. 

 Upstream of the cylinder, a reasonable agreement is visible between the simulation 

and the measurement. The computed water surface is closely follow the measured one 

and the bow wave in front of the cylinder is closely matched. 

 Along the cylinder upstream circumference, the simulation closely reproduces the 

water surface obtained from the measurement. For the rest of the circumference until 

behind the cylinder, the agreement between the simulation and the measurement 

becomes less good. The problem of obtaining a satisfactory simulation result is again 

can be explained by the reduced accuracy of the surface computation in the region of 

strong pressure (surface) gradient such as in the cylinder circumference. 
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 Downstream and immediately behind the cylinder, the computed water surface is 

above the measured one; this was also found in the case of the flat channel bed 

simulation. The same explanation as in the flat-bed case can be put forward. Along 

the downstream circumference of the cylinder, from  = 90° to 180°, one is moving 

from the region of low water surface (high velocity) towards the wake region and is 

experiencing a strong surface gradient. This condition makes the surface computation 

less reliable. Moving away from the cylinder, however, the surface gradient becomes 

favorable and the simulation result closely approaches the experimental data. 

5.6.4 Conclusions 

The applicability of the numerical model presented in Chapter 4 to simulate flow around 

a cylinder has been again confirmed. The model successfully simulates the flow field 

around the cylinder installed in a scoured channel bed. Comparison shows that the 

computed velocity fields expressed in different forms (see Fig. 5.16 to Fig. 5.19) agree 

qualitatively with the measured ones. Further evaluation of the computed velocities was 

carried out by observing the turbulent kinetic energy: its distribution, production, and 

dissipation (see Fig. 5.20 and Fig. 5.21). The distribution of the kinetic energy can be 

considered reasonable, showing a similar pattern as the experimental data. Its magnitude, 

though, is lower than the one obtained from the measurement. The computation of the 

water surface (see Fig. 5.23) is reasonably good, but a problem remains in the 

downstream circumference of the cylinder as in the flat-bed case. 

5.7 Summary and conclusions 

The numerical model presented in the preceding chapter (see Chapter 4) was tested and 

applied. A simple case of uniform flow was selected to test and validate the model. The 

model was subsequently applied to simulate flow around a cylinder. Two cases of flow 

around a cylinder were considered, namely the flat channel bed investigated in the 

previous work (see Yulistiyanto, 1997) and the scoured channel bed of the present work 

(see Chapter 2). 

The test runs using the uniform flow condition prove that the model performs 

satisfactorily. The model produces the uniform flow condition under different inflow and 

initial conditions. Comparison of the computed flow was made to the experimental data 

of Yulistiyanto (see Yulistiyanto, 1997). After a series of calibration runs to adjust the bed 

standard-roughness and the flow depth, all flow conditions such as velocity, eddy 

viscosity, and shear stress are in a good agreement with the experimental data (see Fig. 

5.3 and Fig. 5.4). 

The applicability of the model to simulate flow around a cylinder has been evidenced. In 

both flow cases, the flat channel bed and the scoured channel bed, the model has 

delivered good predictions of the flow fields around the cylinder. Comparisons of the 

computed flow field to the experimental data were made in different ways, such as 

profiles of the 3D-velocity components, velocity vectors, flow intensities, 2D-vorticities, 
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and surface profiles (see Fig. 5.10 to Fig. 5.14 and Fig. 5.16 to Fig. 5.19). In the two flow 

cases, the comparisons show satisfactory agreements. It was found, however, that the 

method of locating the surface boundary opted in the model became less accurate in 

regions of strong pressure gradient. In the scoured channel bed simulation, comparison 

was also done to the turbulent kinetic energy (see Fig. 5.20). It was shown that reasonable 

results were obtained, showing a comparable pattern of the distribution of turbulent 

kinetic energy obtained from the simulation and the measurements. 

Conclusively, the numerical model developed in the present work can be considered as 

being applicable and reliable to simulate flow around a cylinder. It can also be stipulated 

that this model would also be applicable to other type of flow, such as flows in a channel 

bend and in a compound channel. 

5.8 Recommendations for future works 

Judging that the major problem encountered in the simulation is the computation of the 

surface boundary, below is a proposition to adopt another method that is feasible to be 

incorporated in the present model. 

The approach used in the present model to locate the surface boundary is by imposing a 

known (zero) flux across the boundary. From the pressure computation, the SIMPLE 

algorithm, non-zero pressures will be obtained at the surface boundary. Referring to Fig. 

5.24a, the surface computation of the present model works as follows: 

 Impose zero discharge, qt = 0, at the surface boundaries. 

 Obtain the pressure at the cell centers, pP, from the SIMPLE algorithm. 

 Extrapolate the pressure to the surface by assuming a hydrostatic distribution: 

pt  pP  gz zt  zP . 

 Move the surface according to the pressure: h  p t gz . 

 Distribute the surface to get the coordinate of the cell vertices: h1 
1
4 h j , where 

hj is the surface of the four neighbors. 

The proposed alternative approach, on the other hand, imposes a zero pressure at the 

surface. By assuming a hydrostatic distribution, the pressure at the cell center below the 

surface can be obtained, pP  pt  gz zt  zP . This pressure is not corrected in the 

pressure computation of the SIMPLE algorithm. For cells just below the surface, the 

pressure-correction, pc, is known (zero). The discharge across the surface, qt, becomes the 

unknown. It can be incorporated in the pressure-correction equation (see Eq. 4.67 in 

Chapter 4) by interchanging those two variables. The qt is brought to the left-hand side 

and the pc is put to the source term on the right-hand side. Once the discharge, qt, is 

obtained, the velocity at the surface can be computed and used to move the surface. 

Introducing a surface function,  t   x,y,t , to denote the position of the surface and 

differentiating that function with respect to time, one has: 
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d t

dt

t

t

t

x

dx

dt

 t

y

dy

dt

t

z

dz

dt
 0 

 t

t
 u t

t

x
 vt

 t

y
 wt  (5.4) 

which is known as the kinematic condition. The above equation can be solved for  t  by 

using a finite-volume technique on the 2D grid (xy plane) of the surface boundary. To 

avoid the excessive computational time, the surface computation can be carried out at the 

end of each time step. Alternatively, it can also be done after several time steps when the 

pressure correction has reduced to a sufficiently small number as in the case of the 

present model. 

The surface function,  t , is unfortunately given for the surface (top face) center, whereas 

the cell is defined by its vertices. This in effect necessitates the use of an interpolation to 

get the z values of the cell vertices from this function. The simplest approach will be 

using a linear interpolation (see Fig. 5.24c). Note that the usual notations PEWNS are 

used to indicate the center and neighboring nodes on the 2D mesh which constitutes the 

top boundary of the 3D mesh. Integrating Eq. 5.4 over the 2D cell and writing each term 

in the discretized finite-volume form, one has: 



t
 t dS

S t , z
 

t , P
n1   t,P

n

t
St ,z

ut

 t

xSt , z
 dS  u t 

n1
t y 

e

n1
  t y 

w

n1
  t y 

n

n1
  t y 

s

n1

 

vt

 t

ySt , z
 dS  vt 

n1
t x 

e

n1
  t x 

w

n1
  t x 

n

n1
 t x 

s

n1 

w t dS
St , z

  wt St , z

 (5.5) 

where the face values are obtained by interpolation (see Eq. 4.19), for example for the 

east face:  t, e  1 e  t ,P  e  t ,E . Using this interpolation to replace the face values 

in Eq. 5.5, the discretized finite-volume form of Eq. 5.4 is: 

aP t ,P
n1  anb t ,nb

n1

nbEWNS

  b (5.6) 

where the coefficients consist of the following terms: 

aP 
St ,z

t
 anb

nb
  ye  yw  yn  ys u t  xe  xw  xn  xs vt,

aE  e ye u t  xe vt ,

aW  w yw u t  xw v t ,

aN  n yn u t  xn vt ,

aS  s ys u t  xs v t ,

b  wt St , z 
St , z

t
.
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Fig. 5.24  Surface boundary computation: (a) present approach, (b) proposed 

modification, and (c) 2D mesh of the surface boundary. 

 

Referring to Fig. 5.24b, the proposed approach works as follows: 

 Impose zero pressure at the surface, pt = 0, and obtain the pressure at the cell center 

by assuming a hydrostatic distribution: pP  pt  gz zt  zP . 

 Interchange pc and qt in the pressure-correction equation for cells neighboring the 

surface; at those cells, the pressure-correction equation (see Eq. 4.68) reads: 

q t  a nb
p

pnb
c

nb

  b
p
 where the source term bp does not contain qt any more. 

 Obtain the surface velocity based on the computed discharge: Vt  q t St , whose 

components are 

u t V t 


e t,x and 


v t Vt 


e t ,y . 

 Solve Eq. 5.6, at the end of each time step or after the pc has reduced to sufficiently 

small numbers, to get the surface position,  t . 
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 Distribute the surface to get the coordinate of the cell vertices, for example by using a 

simple relation (see Fig. 5.24c):  t,ne 
1
4  t ,e  t,n t ,1 t ,2 . 

The cost of the proposed approach, compared to the present one, is the additional 

equation to be solved at each time step. The iterative matrix solver, similar to the existing 

matrix solver of the present model but written for a 2D case, can be used to solve Eq. 5.6. 
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Notations 

 

anb [m2/s] variable coefficients of the surface function equation. 

b [m3/s] source term of the surface function equation. 

anb
p

 [m3/s/Pa] variable coefficients of the pressure-correction equation. 

b
p
 [m3/s] source term of the pressure-correction equation. 

c [–] k- model constant. 

Dp [m] diameter of cylinder. 

d50 [m] mean diameter of sediment. 

G [m2/s3] production of turbulent kinetic energy. 

g [m/s2] gravitational acceleration. 

h, h∞ [m] flow depth, uniform-flow depth. 

k [m2/s2] turbulent kinetic energy. 

ks [m] equivalent roughness. 

n [–] normal direction. 

p, pc [Pa] pressure, pressure correction. 

Q [m3/s] discharge. 

q [m2/s] discharge per unit width. 

Re [–] Reynolds number. 

r [m] radial direction. 
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S [m2] surface area. 

So, Sw [–] bed and surface slopes. 

t [–] tangential direction. 

U, U∞ [m/s] sectional average velocity, average velocity of uniform flow. 

u, v, w [m/s] Cartesian velocity components. 

ur, u [m/s] cylindrical (radial and tangential) velocity components. 

u  [m/s] friction velocity. 

V, V [m/s] velocity, velocity projection on a plane . 

x, y, z [m] Cartesian coordinate directions. 

 t  [m] surface function. 

 [°] angular direction. 

e [–] interpolation factor. 

 [m2/s3] kinetic energy dissipation. 

 [–] Karman constant. 

, t [m2/s] kinematic viscosity, turbulent eddy viscosity. 

 [1/s] vorticity. 

 [°] angular direction. 

 [kg/m3] density of water. 

o [N/m2] shear stress, bed shear-stress. 
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6 Summary and Conclusions 

6.1 The work 

The work is about an investigation on flow around a vertical cylinder installed on a 

mobile channel bed. When passing around a cylinder, a uni-directional flow undergoes 

different processes as it interacts with the cylinder and the mobile bed. The flow becomes 

three-dimensional and highly turbulent. At the same time, it erodes the mobile bed 

around the cylinder base and a local scouring takes place. These two particular physical 

processes, the flow and the scouring, are the main interests in the study of flow around a 

cylinder. The present work deals only with the first aspect, in which the flow takes place 

in an equilibrium scour-depth condition (the scouring has ceased), under a clear-water 

regime (the transport capacity in and out the scour hole is not exceeded). The objective of 

the investigation is to get a better understanding on the flow as it is altered by the 

cylinder and the scour hole. 

Two approaches were adopted in the investigation, namely laboratory measurements and 

numerical simulations. This is a continuation of the work conducted previously at the 

LRH EPFL by Yulistiyanto (1997)
1
, in which a scoured channel bed replaces the flat 

channel bed one of the previous work and a 3D hydrodynamic model substitutes the 2D 

depth-averaged one. 

6.2 Results 

6.2.1 Laboratory measurements 

Detailed measured velocities were obtained using a non-intrusive acoustic Doppler 

velocity profiler (ADVP), conceived and developed at the LRH EPFL. The instrument 

measures instantaneously the vertical distribution of the velocity vectors in the far-field 

approach flow and scour hole. Two ADVP configurations were used; each one was suited 

for different flow-depths. The focalized ADVP having a cylindrical measuring volume of 

diameter  = 6 [mm] and height d = 3 [mm] was employed for flow depths 

h ≤ 18 [cm]. For deeper flow depths, h > 18 [cm], the non-focalized ADVP having a 

measuring volume of diameter 9 ≤  [mm] ≤ 26 and height d = 4.5 [mm] was used. 

                                                
1 Yulistiyanto, B. (1997). ―Flow around a cylinder installed in a fixed-bed open channel.‖  

Doctoral Dissertation, No. 1631, EPFL, Lausanne, Switzerland. 
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The experiments were conducted in a 29 [m] long, 2.45 [m] wide, and 5.510
4

 inclined 

rectangular channel having a uniform sand bed of mean diameter d50  2.1[mm]. The 

cylinder with a diameter of Dp = 15 [cm], was vertically installed at xL  = 11 [m] 

downstream of the channel entrance. The uniform approach flow ( Q  0.2 [m
3

s], 

U  0.45 [m s], and h  18[cm]) was established and can be considered to be two-

dimensional (B h  13.6), turbulent (Re = 81,000), and subcritical (Fr = 0.34). The 

shear velocity was obtained from the measured velocity and shear stress distributions, as 

being u,  2.65 [cm s]. The velocity measurements were performed at the equilibrium 

scour hole (ds  25 [cm]) under a clear-water scour condition, which had been previously 

established by performing a continuous run of 5 days. 

The measured (time-averaged) velocity field confirms that a 3D flow establishes itself 

around the cylinder, being characterized principally by a clockwise circulating flow 

inside the scour hole. The circulating flow is formed by the downward flow along the 

cylinder face and the reversed flow along the scour bed. This structure was detected 

particularly in the plane of symmetry upstream of the cylinder. Another but smaller and 

weaker circulating flow was seen at the leading edge of the scour hole. Moving around 

the cylinder towards downstream, the circulating flow diminishes and becomes 

practically undetected on the side plane. This circulating flow is here designated as the 

horseshoe vortex. 

The vertical velocity component, which primarily manifests itself as a downward velocity 

notably along the cylinder face, was separately investigated. The radial distributions of 

the downward velocity show that they collapse for a distance of r Dp  ≤ 1.8. Along the 

cylinder face, the locus of the maximum downward velocities for  ≤ 90° fall at 40% of 

the local flow depth irrespective of the angular direction. 

The notion that the vertical velocity component is largely downward —except behind the 

cylinder— suggests that the scour hole attracts the flow. Inside the scour hole, the flow 

may undergo a circulating mechanism; this circulating feature yet takes place and 

remains inside the scour hole. It seems that the flow exits from the scour hole through the 

wake behind the cylinder, where the vertical velocity component has positive values. 

Downstream of the cylinder, a flow reversal towards the surface was observed, being 

pronounced in the close vicinity of the cylinder. It gradually disappears as the flow 

moves away from the cylinder and is returning back towards the uni-directional flow 

condition. 

Outside the scour hole, i.e. in the upper layer above the original bed, the longitudinal 

velocity components dominate; only in the close vicinity of the cylinder the transverse 

and notably the vertical velocity components are important. The flow direction of the 

approach flow when passing the cylinder thus remains much the same. The effect of the 

cylinder in deflecting the approach flow is limited to regions close to the cylinder and 

inside the scour hole. 
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The spatial distributions of the turbulence intensities and the Reynolds stresses were also 

evaluated. The intensity of turbulence inside the scour hole is strong; an increasing 

turbulence was detected approaching the cylinder and moving around the cylinder 

towards the downstream (wake) region. In the wake region, where a separation evidenced 

by a flow reversal takes place, the turbulence attains its strongest intensity. The kinetic 

energy of the flow inside the scour hole, where a circulating flow is eminent, consists of 

high turbulent energy, ranging from 10% to 90% of the total kinetic energy. The profiles 

of the turbulent kinetic energy are characterized by distinguishable bulges along the 

presumed separation line. Approaching and moving around the cylinder, those bulges 

move downwards, increase, and enlarge. 

The longitudinal distribution of the bed shear-stresses along the plane of symmetry shows 

that the bed shear-stress is reduced upon entering the scour hole when compared to its 

value in the approach flow. The shear stress along the upstream scour bed has negative 

values, corresponding to the flow reversal in that region. These observations are 

supported by the numerical simulation. 

6.2.2 Numerical simulations 

The flow simulations were performed by using a 3D numerical model, which is 

developed based on the approximate solution of the Reynolds-averaged Navier-Stokes 

equations for incompressible flows by using finite-volume method. The model uses the k-

 turbulence closure model to compute the turbulence stresses and the SIMPLE (Semi-

Implicit Method for Pressure-Linked Equations) method of Patankar and Spalding 

(1972)
2
 to link the velocity to the pressure. The water surface position is determined 

according to the pressure along the surface boundary. The model solves the transient flow 

equations, but is applicable only for steady flow problems. 

The core of the present model is relatively standard and can be found in classical 

textbooks. However, some detailed derivations and clarifications were elucidated about 

the boundary conditions and the pressure-velocity coupling. These are seldom presented 

in detail. 

Preliminary simulation tests were carried out to ascertain the methods and modeling 

techniques opted in the model; these serve as the calibration and verification of the 

model. A simple and well-known uniform flow was selected. The model value of the 

equivalent standard roughness of the bed was calibrated against the measurements. 

Verification of the model was done by simulating the flow under different boundary and 

initial conditions; the model could produce the uniform flow field and the agreement with 

the measured one was nearly perfect. 

                                                
2 Patankar, S.V., and Spalding, D.B. (1972). ―A calculation procedure for heat, mass and momentum 

transfer in three-dimensional parabolic flows.‖ Int. J. Heat Mass Transfer, 15, 1787-1806. 
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The tested model was subsequently applied to simulate two cases of flow around a 

cylinde, namely the flat channel bed of the previous study and the scoured channel bed of 

the present measurements. 

In both cases, the model has delivered good predictions of the flow fields around the 

cylinder. Comparisons of the computed flow field to the experimental data were made in 

different ways, such as profiles of the 3D-velocity components, velocity vectors, flow 

intensities, vorticities, and water surface position. In both cases, the comparisons show 

satisfactory agreements. It was found, however, that the method of locating the surface 

boundary opted in the model became less accurate in regions of strong pressure gradient.  

In the scoured channel bed simulation, a comparison to the measured data was also done 

for the turbulent kinetic energy. While the general trend of the turbulent kinetic-energy 

distribution could be well predicted, its magnitude was under estimated by the simulation. 

It appears that the model cannot sufficiently generate the turbulent kinetic energy. From 

the evaluation of the production and dissipation of the turbulent kinetic energy, it was 

found that the production is not appropriately computed in the vicinity of solid 

boundaries. At such boundaries, the assumption used in the derivation of the method is 

violated. This problem stems from the difficulty in evaluating gradients of the normal 

velocity, which are not well defined at solid boundaries. The problem has been identified 

and put forward, but the solution of this problem is not elaborated in the present work. 

6.3 Conclusions 

The laboratory measurements and the numerical simulations have provided the detail 

picture of the 3D flow pattern resulted from a uni-directional flow passing around a 

cylinder. Thanks to the powerful ADVP, the measurements give the detail information 

not only of the mean (time-averaged) velocities, but also the turbulence structure. The 

vortex formed by the downward and reversal flow in the scour hole could be detected; 

this vortex can be designated as the horseshoe vortex. The numerical model developed in 

the present work has proven also its capability to simulate this highly 3D flow pattern. 

Comparisons of its results to the measured flow show reasonably good agreements. The 

model may serve as a predictive tool for other flows of different hydraulic conditions, 

such as flows in a channel bend and in a compound channel. 

The flow pattern upstream and downstream of the cylinder, obtained by the 

measurements and the numerical simulations, are presented in Fig. 6.1 (for the flat 

channel bed) and Fig. 6.2 (for the scoured channel bed). These figures may well illustrate 

the results of the present work. 

6.4 Recommendations for future works 

From the experience gained during the present work, the following suggestions are 

proposed in conducting investigative works on the flow around the cylinder: 
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 Laboratory measurements: completing the measurements with flow visualizations and 

pressure measurements 

 Numerical simulation: refining the boundary treatments, notably the solid boundaries 

and water surface computation as discussed in Sect. 5.6 and 5.8, respectively 
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Fig. 6.1  Measured and computed velocity fields upstream…. 

 

Fig. 6.2  Measured and computed velocity fields upstream and downstream of the 

cylinder for the scoured channel-bed case. 
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The experimental data and the numerical model source code are available on  
a CD format, obtainable at the Laboratoire de Recherches Hydrauliques, EPFL,  
CH-1015 Lausanne, Switzerland. 



 

FLOW AROUND A CYLINDER  
IN A SCOURED CHANNEL BED 

 

 
APPENDICES: 

EXPERIMENTAL DATA 
NUMERICAL MODEL 

 

 
THÈSE NO 2368 (2001) 

 

 

 
PRÉSENTÉE AU DÉPARTEMENT DE GÉNIE CIVIL 

 

 

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 
 

 
POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES TECHNIQUES 

 

 

 

 
PAR 

 

Istiarto ISTIARTO 

Insinyur (civil), Gadjah Mada University, Yogyakarta, Indonésie 
M.Eng., Asian Institute of Technology, Bangkok, Thaïlande 

de nationalité indonésienne 

 

 

 

 
acceptée sur proposition du jury : 

Prof. W.H. Graf, Directeur de thèse 
Dr. M.S. Altinakar, rapporteur 

Dr. M. Cellino, rapporteur 
Dr. R. Monti, rapporteur 
Prof. Y. Zech, rapporteur 

 

 

 
Lausanne, EPFL 

2001 



– ii – 

 
 
 
 



 – iii – 

Appendices 

Appendix A: Experimental Data A.1 

Appendix B: Numerical Model B.1 

B.1 Program structure B.1 

B.2 Input data file B.5 

B.2.1 KECONTROL B.5 

B.2.2 KECOORDINA B.10 

B.3 Souce code B.11 

 
 

 

 



 – iv – 

 

 

 



 – A.1 – 

 

A Experimental Data 

The experimental data are stored in the following files: 

1. DataSheet_000 — measured data for  = 0°. 

2. DataSheet_015 — measured data for  = 15°. 

3. DataSheet_030 — measured data for  = 30°.

4. DataSheet_045 — measured data for  = 45°.

5. DataSheet_060 — measured data for  = 60°.

6. DataSheet_075 — measured data for  = 75°.

7. DataSheet_090 — measured data for  = 90°.

8. DataSheet_105 — measured data for  = 105°.

9. DataSheet_120 — measured data for  = 120°.

10. DataSheet_135 — measured data for  = 135°.

11. DataSheet_180 — measured data for  = 180°. 

and

12. DataSheet_Uniform — measured data for uniform flow (without cylinder).

13. DataSheet_zbed&zsur — measured bed and surface elevations.



All files can be found in the accompanying CD. 
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B Numerical Model 

B.1 Program structure 
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B.2 Input data file 

The input data files are the KECONTROL that defines the main control parameters of the 

computation and the KECOORDINA that specifies the coordinates of the cell vertices. 

The following sections explain these two data files; examples can be found in the 

accompanying CD. 

B.2.1 KECONTROL 

#1 title 

A string of 100 characters. 

#2 lcont, lreset, lwinit, ltest 

four logical characters used to define a continuation run, to reset the time-level 

index to zero, to ask for a print out of the initial conditions (into the KERESINI 

file), and to a debugging process in a test run, respectively. 

#3 lgrav, lcyclic, lsurface 

three logical characters: the gravitational acceleration is specified, cyclic inlet-

outlet boundary conditions are used, and the surface update is active. 

#4 lunsteady, ldtvar 

two logical characters: the time level is active and the time step varies. 

#5 lzunif, lvinit, lnewinl, lnewcoor 

four logical characters: a uniform grid size in the vertical direction is used, the 

velocity throughout the computational domain is specified, new inlet values are 

specified, and a new geometry is imposed, respectively. 

#6 lpcout 

one logical character: a zero pressure is enforced at the top cells of the outlet. 

#7 lcal(i), i=1,nfi (nfi=6) 

six logical characters: do the computation for each of the (u,v,w,p,k,) variables.

#8 modke:  

integer number: [1] standard k- [2] non-equlibrium k- 

#9 nsol(i), i=1,nfi (nfi=6) 

six integer numbers: which matrix solver is used for each of the -equations 

[1]=SIPSOL, [2]=CGStab. 

#10 nit(i), i=1,nfi (nfi=6) 

six integer numbers: the number of the inner iterations in the matrix solver for 

each of the -equations. 

#11 clamda1(i), i=1,nfi (nfi=6) 

six real numbers: the first convergence criteria in the matrix solver for each of the 

-equations. 

#12 clamda2(i), i=1,nfi (nfi=6) 

six real numbers: the second convergence criteria in the matrix solver for each of 

the -equations. 

#13 nsc(i), i=1,nfi (nfi=6) 

six integer numbers: the discretisation methods for each of the -equations 

[1] upwind, [2] hybrid, or [3] power law. 
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#14 dcf(i), i=1,nfi (nfi=6) 

six real numbers: the deferred-correction factors for each of the -equations. 

#15 urf(i), i=1,nfi (nfi=6) 

six real numbers: the under-relaxation factors for each of the -equations. 

#16 urfvis,urfdhp,urfdhz 

three real: the under-relaxation factors for the eddy-viscosity, for the surface 

movement according to the grid size criterion, and for the surface movement 

according to the pressure defect criterion.

#17 tol(i), i=1,nfi (nfi=6) 

six real numbers: the error tolerances for each of the -equations. 

#18 pctol 

one real number: the error tolerance for the pressure correction. 

#19 resmin, resmax 

two real numbers: the minimum and maximum errors, if these limits are 

exceeded, the program will stop. 

#20 npcor 

one integer number: the method of the pressure correction: [1] SIMPLE or 

[2] SIMPLEC. 

#21 nipcor 

one integer number: the number of iterations in the pressure correction [1] without 

or [2] with correction due to non-orthogonal terms. 

#22 nigrad 

one integer number: the number of iterations in the gradient computation 

[1] without or [2] with correction due to non-orthogonal terms. 

#23 dt, edt 

two real numbers: the time step and the E factor in case of varying t. 

#24 nitl, nitm, nitn, nitprn 

four integer numbers: the number of iterations for the -, m-, n-iterations, and for 

the printing interval, respectively. 

#25 density, viscosity, gravity 

three real numbers: the water density, the kinematic viscosity, and the 

gravitational acceleration, respectively. 

#26 disch 

one real number: the discharge through the inlet boundary. 

#27 axisrot 

one real number: the angle of the axis rotation in degrees, a counter-clockwise 

convention is used. 

#28 nx, ny, nz 

three integers numbers: the number of vertices (the number of divisions + 1) in 

the x, y, and z directions, respectively (see example). 

#29 ipcr, jpcr, kpcr 

three integers numbers: the (i,j,k) indices of the cell used for the reference of the 

pressure correction. 

#30 ipr, jpr, kpr 

three integer numbers: the (i,j,k) indices of the cell used for the reference of the 

pressure. 
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#31 imon1, jmon1, kmon1 

three integer numbers: the (i,j,k) indices of the first monitoring cell. 

#32 imon2, jmon2, kmon2 

three integer numbers: the (i,j,k) indices of the second monitoring cell. 

#33 imon3, jmon3, kmon3 

three integer numbers: the (i,j,k) indices of the third monitoring cell. 

#34 imon4, jmon4, kmon4 

three integer numbers: the (i,j,k) indices of the fourth monitoring cell. 

#35 imon5, jmon5, kmon5 

three integer numbers: the (i,j,k) indices of the fifth monitoring cell. 

#36 nrbnd 

one integer number: the number of the boundary specifications (see example). 

 

#37 cbnd 1,cbnd 2 

two 3-character strings, put in the columns 1-3 and 5-7: the boundary type and the 

position of the boundary node with respect to the interior node, respectively. 

#38 istart, iend, jstart, jend, kstart, kend 

six integer numbers: the position of the boundary nodes, from istart to iend, from 

jstart to jend, and from kstart to kend (see example). 

#39 rks 

one real number: the equivalent roughness of the wall boundary; a zero value is 

given to boundaries other than the wall and the block boundaries (see example). 

 

The above 3 lines (#37, #38, #39) are to be specified to each boundary specification, 

nrbnd. 

 

#40 zper 

one real number: the vertical location of the cell vertices, in percent of the depth. 

 

The above input line (#40) is to be specified for each vertical vertices, nz, starting from 

the top (the surface, zper =  100.0) to the bottom (the bed, zper = 0.0). If a uniform 

vertical grid size is specified, i.e. when lzunif is true (see #5), this input is not needed. 

 

#41 uin, vin, win, kin, epsin 

five real numbers: the inlet values for u, v, w, k, and . 

 

The above input line (#41) is to be specified for each cells in a vertical, nk = nz+1, 

starting from the top (the surface, k = nk) to the bottom (the bed, k = 1). This is done for 

one vertical (one profile) only and is assumed to be valid for all verticals in the inlet 

boundaries. 

EXAMPLE: BOUNDARY SPECIFICATION 

An example is here given to demonstrate the specification of the boundary specification 

in the KECONTROL input file. 
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Fig. B.1  Example of a computational domain having (1711 7) cells and  

7 boundary specifications. 

Consider a computational domain shown in Fig. B.1. There are 1711 7 cells in the x, 

y, and z directions, respectively. The corresponding number of cell vertices is thus 

1812  8 and of nodes is 19 13 9. In data #28 (nx, ny, nz) of the KECONTROL, the 

following values are specified: 

#28: 18   12    8 

There are 7 boundary types: B1 (blocked cells), B2 (inlet), B3 (outlet), B4 (channel side 

wall), B5 (symmetry plane), B6 (channel bed), and B7 (water surface). In data 

#36 (nrbnd) of the KECONTROL, the following is specified: 

#36: 7 

This input is then followed by 3-lines boundary specifications, #37 (cbnd 1, cbnd 2), 

#38 (istart, iend, jstart, jend, kstart, kend), and #39 (rks), to be inputted for each 

boundaries. The boundary type (cbnd 1) is either: 
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 BLO for  blocked cells, 

 INL for  inlet, 

 OUT for  outlet, 

 WAL for  wall boundaries, 

 SYM for  symmetry planes, or 

 FRE for  free surfaces. 

The boundary position (cbnd 2) is either: 

 EAS for  east face, 

 WEA for  west face, 

 NOR for  north face, 

 SOU for  south face, 

 TOP for  top face, or 

 BOT for  bottom face. 

Note that the cbnd must be written in either upper case or lower case letters, but not 

mixed ones. For the boundary specifications shown in Fig. B.1, the following data must 

be inputted: 

#37: blo blo 

#38: 9   11   7   8   2   8 

#39: 0.22E-3 

#37: inl wea 

#38: 2   2   2   12   2   8 

#39: 0.0 

#37: out eas 

#38: 18   18   2   12   2   8 

#39: 0.0 

#37: wal sou 

#38: 2   18   2   2   2   8 

#39: 0.22E-3 

#37: sym nor 

#38: 2   18   12   12   2   8 

#39: 0.0 

#37: wal bot 

#38: 2   18   2   12   2   2 

#39: 4.2E-3 

#37: fre top 

#38: 2   18   2   12   8   8 

#39: 0.0 

 

B.2.2 KECOORDINA 

#1 title 

A string of 100 characters. 
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#2 dummy text 

A string of any number of characters; this line is not read. 

#3 i, j, x, y, zb, zs 

2 integer numbers: the (i,j) cell indices and 

4 real numbers: the (x, y) coordinates of the bed vertices, and the bed (zb) and the 

surface (zs) coordinates. 

 

The above input is to be repeated according to the number of vertices, (nx,ny), of the 

computational domain. 

 

B.3 Source code 

The source code of the program consists of 6 program files and 11 variable-declaration 

files: 

1. ke.f — the main program. 

2. keflow.f — the flow model. 

3. keturb.f — the k- model. 

4. keinit.f — the initialization routines. 

5. keread.f — the routines that read the data from or write the results to a file. 

6. kegeom.f — the routines that construct the geometry of the computational 

domain.

 

7. ke_bound.inc — variable declarations: boundary conditions. 

8. ke_calcon.inc — variable declarations: computational control-parameters.

9. ke_coef.inc — variable declarations: variable coefficients.

10. ke_geo.inc — variable declarations: geometry. 

11. ke_grad.inc — variable declarations: gradients.

12. ke_index.inc — variable declarations: cell indices.

13. ke_logic.inc — variable declarations: logical variables.

14. ke_param.inc — variable declarations: space (memory) allocations.

15. ke_varflo.inc — variable declarations: flow variables.

16. ke_varold.inc — variable declarations: variables at the n time level.

17. ke_vartur.inc — variable declarations: k- variables.

The program is written in the FORTRAN77 language and is suited for the MPW Absoft 

Version 6.2 compiler. 

The print out of all files is given in the next pages. The files can also be found in the 

accompanying CD. 
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