
– 4.i –

Chapter 4

4 Numerical Model Development 4.1
Abstract ... 4.1

Résumé ... 4.1

4.1 Governing equations .. 4.2

4.2 Solution strategy: the iterative method .. 4.5

4.3 Numerical method: the finite-volume approximation 4.8
4.3.1 Grid arrangement .. 4.8
4.3.2 Computation of the surface area and of the cell volume 4.9
4.3.3 Cell-face interpolation and gradient computation .. 4.11
4.3.4 Discretisation of the time derivative terms ... 4.12
4.3.5 Discretisation of the convective terms .. 4.13
4.3.6 Discretisation of the diffusive terms ... 4.14
4.3.7 Convective-diffusive terms: hybrid and power-law schemes 4.16
4.3.8 Source terms ... 4.19
4.3.9 Assembly of the coefficients ... 4.22

4.4 Pressure-velocity coupling ... 4.24
4.4.1 SIMPLE algorithm .. 4.24
4.4.2 Pressure correction procedure ... 4.28
4.4.3 Under-relaxation factor and time step .. 4.29

4.5 Boundary conditions .. 4.29
4.5.1 Boundary placement ... 4.29
4.5.2 Inflow boundary .. 4.30
4.5.3 Outflow boundary ... 4.32
4.5.4 Wall boundary ... 4.33
4.5.5 Symmetry boundary .. 4.41
4.5.6 Surface boundary .. 4.43

4.6 Solution procedures .. 4.47
4.6.1 Spatial discretisation ... 4.47
4.6.2 Matrix solvers ... 4.49

4.7 Summary ... 4.53

References .. 4.53

Notations .. 4.54

– 4.ii –

– 4.1 –

4 Numerical Model Development

Abstract

Presented in this chapter is the development of a 3D numerical model intended to
simulate flow around a cylinder. The model is based on the Reynolds-averaged Navier-
Stokes and continuity equations for incompressible flow, closed with the k-ε turbulence
model. The working equation of the model is obtained by discretizing the governing
equations, written in a general convective-diffusive transport equation, using finite-
volume techniques on a structured, collocated, boundary-fitted, hexahedral control-
volume grid. The hybrid (Spalding, 1972) or power-law (Patankar, 1980) upwind-central
difference scheme, combined with the deferred correction method (Ferziger and Peric,
1997), is employed in the discretisation of the governing equations. The solution of the
working equation is achieved by an iterative method according to SIMPLE algorithm
(Patankar and Spalding, 1972). Along solid boundaries, use is made of the wall function
method, while along surface boundaries the pressure defect is used to define the surface
position. On other boundaries, namely inlet, outlet, and symmetry boundaries, classical
methods are used, such as zero gradients, zero stresses, or known functions.

Résumé

Ce chapitre présente un développement d’un modèle numérique pour simuler
l’écoulement tridimensionnel autour d’un cylindre. Le modèle est basée sur la
représentation en volumes finis des équations de Reynolds, de continuité et de k-ε. Les
équations, sous forme d’une équation de transport, sont en suite formulées pour un
maillage structuré dont les variables primitives sont définies au centre des volumes de
contrôle. Les flux convectif et diffusif sont calculés par les méthodes hybride (Spalding,
1972) ou loi de puissance (Patankar, 1980) avec des corrections des termes non
orthogonaux (Ferziger and Peric, 1997). Le modèle utilise la méthode itérative de
SIMPLE pour résoudre les équations de travail ainsi obtenues. Les conditions aux bords
le long d’une parois sont imposées par la loi logarithmique. La surface d’eau est
déterminée à partir des pressions résiduelles dans les cellules de surface. En autres tipes
des bords, par exemple à l’entré, à la sortie et aux plans de symétrie, des méthodes
standards sont appliquées soit des gradients nuls, sans cisaillement ou des valeurs
connues.

– 4.2 –

4.1 Governing equations

The flow model that is developed in this work is based on the approximate solution of the
time-averaged equations of motion and continuity for incompressible flows by using
finite-volume method. In the Cartesian coordinate system these equations read:

∂u
∂t

+
∂uu
∂x

+
∂vu
∂y

+
∂wu
∂z

= −
1
ρ

∂p
∂x

+
1
ρ

∂τxx
∂x

+
1
ρ

∂τyx
∂y

+
1
ρ

∂τ zx
∂z

+ gx (4.1)

∂v
∂t

+
∂uv
∂x

+
∂vv
∂y

+
∂wv
∂z

= −
1
ρ

∂p
∂y

+
1
ρ

∂τ xy
∂x

+
1
ρ

∂τyy
∂y

+
1
ρ

∂τ zy
∂z

+ gy (4.2)

∂w
∂t

+
∂uw
∂x

+
∂vw
∂y

+
∂ww
∂z

= −
1
ρ

∂p
∂z

+
1
ρ

∂τ xz
∂x

+
1
ρ

∂τ yz
∂y

+
1
ρ

∂τ zz
∂z

+ gz (4.3)

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (4.4)

in which x, y, and z are Cartesian co-ordinates in the horizontal, transversal, and vertical,
respectively; u, v, and w are the corresponding (time-averaged) velocity components, p is
the (time-averaged) pressure, ρ is the mass density of water, gx, gy, gz are the x, y , z
components of the gravitational acceleration, and τij’s are the j direction components of
the shear stress acting on the surface normal to the i direction. These stresses are due to
the molecular viscosity and turbulent fluctuation. For flows having sufficiently high
Reynolds number, the viscous stresses are much smaller in comparison with those of the
turbulence and thus can be neglected. Using Boussinesq’s eddy viscosity concept, these
stresses are proportional to the velocity gradients according to the following expressions
(see Rodi, 1984, p. 10):

τ xx
ρ

= ν t 2
∂u
∂x

− 2
3 k,

τ xy
ρ

=
τyx
ρ

= ν t
∂v
∂x

+
∂u
∂y

&

'
(

)

*
+ ,

τ yy
ρ

= νt 2
∂v
∂y

− 2
3 k,

τ xz
ρ

=
τzx
ρ

= νt
∂w
∂x

+
∂u
∂z

&
'

)
*
,

τzz
ρ

= ν t2
∂w
∂z

− 2
3 k,

τyz
ρ

=
τzy
ρ

= νt
∂w
∂y

+
∂v
∂z

&
' (

)
* +
.

 (4.5)

in which νt is the turbulent or eddy viscosity and k is the turbulent kinetic energy defined
as k = 1

2 ! u ! u + ! v ! v + ! w ! w () where superscripts mean the fluctuating components.
Inserting the definitions in Eq. 4.5 into the momentum equations, Eqs. 4.1 to 4.3, one
obtains:

– 4.3 –

∂u
∂t

+
∂uu
∂x

+
∂vu
∂y

+
∂wu
∂z

= −
1
ρ
∂p
∂x

−
2
3
∂k
∂x

+
∂
∂x

νt 2
∂u
∂x
%
&

'
(

+
∂
∂y

νt
∂v
∂x

+
∂u
∂y

%

&
)

'

(
* +

∂
∂z
ν t

∂w
∂x

+
∂u
∂z

%
&

'
(

+ gx

∂v
∂t

+
∂uv
∂x

+
∂vv
∂y

+
∂wv
∂z

= −
1
ρ
∂p
∂y

−
2
3
∂k
∂y

+
∂
∂x
ν t

∂v
∂x

+
∂u
∂y

%

&
'

(

)
* +

∂
∂y
ν t 2

∂v
∂y
%

&
'

(

)
* +

∂
∂z
νt

∂w
∂y

+
∂v
∂z

%

&
'

(

)
* + gy

∂w
∂t

+
∂uw
∂x

+
∂vw
∂y

+
∂ww
∂z

= −
1
ρ
∂
∂z
−
2
3
∂k
∂z

+
∂
∂x
ν t

∂w
∂x

+
∂u
∂z

%
&

'
(

+
∂
∂y
νt

∂w
∂y

+
∂v
∂z

%

&
)

'

(
* +

∂
∂z
ν t 2

∂w
∂z

%
&

'
(

+ g z

Separating the normal and cross second-derivatives and putting the former on the left-
hand sides, one gets:

∂u
∂t

+
∂uu
∂x

+
∂vu
∂y

+
∂wu
∂z

−
∂
∂x

νt
∂u
∂x

$
%

&
'
−
∂
∂y

ν t
∂u
∂y

$

%
(

&

'
) −

∂
∂z

ν t
∂u
∂z

$
%

&
'

= −
1
ρ
∂p
∂x

+
∂

∂x
νt
∂u
∂x

$
%

&
'

+
∂

∂y
ν t
∂v
∂x

$
%

&
'

+
∂

∂z
ν t
∂w
∂x

$
%

&
'

+ gx

 (4.6)

∂u
∂t

+
∂uv
∂x

+
∂vv
∂y

+
∂wv
∂z

−
∂
∂x

ν t
∂v
∂x

$
%

&
'
−
∂
∂y

νt
∂v
∂y

$

%
(

&

'
) −

∂
∂z

νt
∂v
∂z

$
%

&
'

= −
1
ρ
∂p
∂y

+
∂

∂x
νt
∂u
∂y

$

%
(

&

'
) +

∂

∂y
ν t
∂v
∂y

$

%
(

&

'
) +

∂

∂z
ν t
∂w
∂y

$

%
(

&

'
) + gy

 (4.7)

∂w
∂t

+
∂uw
∂x

+
∂vw
∂y

+
∂ww
∂z

−
∂
∂x

ν t
∂w
∂x

$
%

&
'
−
∂
∂y

ν t
∂w
∂y

$

%
(

&

'
) −

∂
∂z

νt
∂w
∂z

$
%

&
'

= −
1
ρ
∂p
∂z

+
∂

∂x
νt
∂u
∂z

$
%

&
'

+
∂

∂y
ν t
∂v
∂z

$
%

&
'

+
∂

∂z
ν t
∂w
∂z

$
%

&
'

+ gz

 (4.8)

The second to fourth terms on the left-hand side of Eqs. 4.6 to 4.8 represent a convective
transport and the next three terms represent a diffusive transport. The terms on the right-
hand side are considered as sources and are treated as known quantities when solving the
equations for the velocity components u, v, and w. The turbulent kinetic energy gradient,
being small compared to the pressure gradient, is neglected.

From the k-ε turbulence model (Launder and Spalding, 1974; Rodi, 1984, p. 27), the
turbulent viscosity, νt, is given by:

– 4.4 –

νt = cµ
k2

ε
 (4.9)

where ε is the dissipation of the turbulent kinetic energy. The field distributions of the
turbulent kinetic energy and its dissipation are obtained from the following transport
equations (Launder and Spalding, 1974; Rodi, 1984, p. 28):

∂k
∂t

+
∂uk
∂x

+
∂vk
∂y

+
∂wk
∂z

−
∂

∂x
ν t
σk

∂k
∂x

%

&
'

(

)
* −

∂

∂y
νt
σk

∂k
∂y

%

&
'

(

)
* −

∂

∂z
ν t
σk

∂k
∂z

%

&
'

(

)
* =G − ε (4.10)

∂ε

∂t
+
∂uε
∂x

+
∂vε
∂y

+
∂wε
∂z

−
∂

∂x
ν t
σε

∂ε

∂x
&

'
(

)

*
+ −

∂

∂y
ν t
σε

∂ε

∂y
&

'
(

)

*
+ −

∂

∂z
νt
σε

∂ε

∂z
&

'
(

)

*
+ =

ε

k
c1G − c2ε() (4.11)

in which G is the production of kinetic-energy given by:

G = ν t 2
∂u
∂x

$

%
&

2

+
∂u
∂y

+
∂v
∂x

$ '

%
& (
∂u
∂y

+
∂u
∂z

+
∂w
∂x

$

%
&
∂u
∂z

)
*
+

, +
+

∂v
∂x

+
∂u
∂y

$ '

%
& (
∂v
∂x

+ 2 ∂v
∂y

$ '

%
& (

2

+
∂v
∂z

+
∂w
∂y

$
'

%

&
(
∂v
∂z

+
∂w
∂x

+
∂u
∂z

$

%
&
∂w
∂x

+
∂w
∂y

+
∂v
∂z

$
'

%

&
(
∂w
∂y

+ 2 ∂w
∂z

$

%
&

2-
.
+

/ +

 (4.12)

The model coefficients cµ, c1, c2, σk, and σε contained in the above transport equations
are assumed to be constant and take the values given in Table 4.1 (Launder and Spalding,
1974; Rodi, 1984, p. 29).

Table 4.1 Values of coefficients in k-ε model.

cµ c1 c2 σk σε

0.09 1.44 1.92 1.0 1.3

It is more convenient to cast the continuity equation, Eq. 4.4, the momentum equations,
Eqs. 4.6 to 4.8, and the transport equations of k and ε, Eqs. 4.10 and 4.11, into a general
transport equation (Versteeg and Malalasekera, 1995, p. 25):

∂φℓ
∂ t

+∇ φℓV() − ∇ Γℓ∇φℓ() = Rℓ (4.13)

In the above equations, φℓ is any dependent scalar variable, V is the velocity vector, Γℓ
is the diffusion coefficient, and Rℓ is a column matrix of scalar sources (see its definition
in Table 4.2). Integrating this equation over a three-dimensional discrete control volume
yields (Versteeg and Malalasekera, 1995, p. 25):

∂

∂t
φℓ dV +

V ∫∫∫ ∇ φℓV()dV
V ∫∫∫ − ∇ Γℓ∇φℓ() dV

V ∫∫∫ = Rℓ dV
V ∫∫∫ (4.14)

– 4.5 –

The volume integrals of the convective and diffusive terms, the second and third terms on
the left-hand side, can be expressed as integral over the closed surface bounding the
control volume by applying Gauss divergence theorem (Versteeg and Malalasekera,
1995, p. 26; Hirsch, 1988, p. 241):

∂

∂t
φℓ dV +

V ∫∫∫ φℓV ⋅ dSS∫∫ − Γℓ∇φℓ ⋅dSS∫∫ = Rℓ dV
V ∫∫∫ (4.15)

where S is the surface vector normal outward to the control volume dV .

Table 4.2 Terms in the general transport equation, Eq. 4.13.

∂φℓ
∂ t

+∇ φℓV() − ∇ Γℓ∇φℓ() = Rℓ (4.13)

 ℓ φℓ Γℓ Rℓ

1 u νt −
1
ρ

∂p
∂x

+
∂

∂x
ν t
∂u
∂x

%
&

'
(

+
∂

∂y
ν t
∂v
∂x

%
&

'
(

+
∂

∂z
ν t
∂w
∂x

%
&

'
(

+ gx

2 v νt −
1
ρ

∂p
∂y

+
∂

∂x
ν t
∂u
∂y

%
& '

(
) *

+
∂

∂y
ν t
∂v
∂y

%
& '

(
) *

+
∂

∂z
ν t
∂w
∂y

%
& '

(
) *

+ gy

3 w νt −
1
ρ

∂p
∂z

+
∂

∂x
ν t
∂u
∂z

%
&

'
(

+
∂

∂y
ν t
∂v
∂z

%
&

'
(

+
∂

∂z
ν t
∂w
∂z

%
&

'
(

+ gz

4 1 0 0

5 k νt σk G-ε

6 ε νt σε c1
ε

k
G − c2

ε

k
ε

4.2 Solution strategy: the iterative method

The integral form of the general transport equation, Eq. 4.15, is used to obtain the
solution for u, v, w, k, and ε by substituting these variables to the scalar variable φ. The
solution of the equation is sought at discrete time steps; calculations are performed at
every discrete time steps and repeated until a steady-state solution is obtained. The time
derivative term in Eq. 4.15 facilitates the application of the model to transient flow
problems; in this case, the solution at each discrete time step must converge. When the
problems concern steady case ones —as is the case in the present work— the time
derivative serves as an iteration loop. In this case the solution at each time step is
considered as an intermediate solution, and the end-solution (the steady-state one) is
obtained when all variables φ’s converge. Since the end-solution that is sought, it is not
necessary to force the intermediate solution to converge at the same degree of
convergence as that of the end-solution. The complete computational procedure is
depicted in the flowchart shown in Fig. 4.1. The time loop, from the initial until the
steady-state solution is depicted as the n-iteration. Every variable in the governing

– 4.6 –

equations, Eq. 4.15, is linked to each other since they appear in every equation. To obtain
the solution of every variable that satisfies all equations at a time step, an iterative
procedure is employed; this is called the m-iteration in Fig. 4.1. The basic idea of the
procedure is to consecutively solve the equations for each variable in the order of the
momentum, the continuity and the k-ε equations. The momentum equation is solved
successively for the u, v, and w components. The order of the computation is not
important. The solution of each variable is sought independently, for example when
solving the x-momentum equation for u, the other variables appearing in that equation,
the v, w, k and ε, are assumed as known. When all velocity components are obtained, the
pressure is computed through the continuity equation, which in turn will modify the
velocity. New solutions of the momentum equation are then necessary. When the velocity
and pressure converge, the k-ε equations are solved based on the latest values of the
velocity components. The k is solved first and the ε follows. When solving for ε, the
latest value of k is used. The procedure is repeated until every variable satisfies all
governing equations.

Eq. 4.15, however, cannot be used to obtain directly the pressure. The pressure appears in
the momentum equations, but does not have any equation of its own. The fourth equation,
the continuity, does not explicitly link the pressure to the velocity. The solution of the
pressure is thus not straightforward; some kind of a ‘trial-and-correction’ procedure is
employed. This is indicated as the ℓ -iteration. Firstly, the pressure is estimated and
supplied to the momentum equation to get the u, v, and w velocity components.
Secondly, the continuity equation is imposed upon those velocities. If the velocities do
not satisfy the continuity equation, the velocities and the pressure are then corrected. The
corrected pressure is used as the new estimate and the procedure is repeated.

Upon the completion of the ℓ -iteration, the computation continues to the k-ε model.
Given the velocity obtained from the ℓ -iteration, the k-ε equations are solved
consecutively, and the eddy-viscosity is subsequently obtained. A check is carried out to
all new variables φ's. If each φ satisfies all the governing equations, those variables are
regarded as the values at the new time step, otherwise the computation goes back to the
solution of the momentum equation (the m-iteration).

The surface boundary which determines the computational domain but its position is part
of the solution, is handled at the n-iteration and kept constant during the m-iterations.
Thus the positioning of the free surface is carried out explicitly. At the end of the m-
iteration, the water surface is moved according to the pressure defect at the surface. This
in turn will change the computational domain for the new time of the n-iteration.

The overall procedure thus involves three blocks of iteration. The first iteration block is
to get solution of the velocity and pressure, i.e. solving the momentum equations and
imposing the continuity. The second block solves the momentum, continuity, and k-ε
equations within a time step. The last block is the time marching iteration to get the
steady-state solution.

– 4.7 –

STOP

Solve the turbulence
k-equation

Impose the continuity:
pressure correction

Generate the grid

START

Initial conditions:
u,v,w,p,k,

Compute the eddy-viscosity

m = m+1

n = n+1

Update (correct)
the velocity and presssure fields

Update the surface
boundary and the gridSteady-state solution

?

Y

N

Y

Y

N

N

Estimate a pressure field:

Solve the momentum equations:
u, v, w

u,v,w,p,k,
converged

?

u,v,w,p
converged

?

Solve the turbulence
 -equation

Y

k

 t

l l= +1

n = 1

m = 1

l = 1

u v w p, , ,

u v w pc c c c, , ,

u v w, ,

p p=

Fig. 4.1 Overall iterative procedure of the solution of Eq. 4.15.

– 4.8 –

4.3 Numerical method: the finite-volume approximation

4.3.1 Grid arrangement

The approximation to the solution of Eq. 4.15 is sought by finite-volume approach. The
computational domain is discretized in a 3D grid having a finite number of control
volumes (cells); the integration is then carried out in each cell. A non-orthogonal
hexahedron cell is selected in the present model. A typical one is shown in Fig. 4.2. A
cell is identified by its center, P, which makes up the node where the dependent variable
is to be defined. A cell has six neighbors, named according to their respective compass
directions, being the East, West, North, East, Top, and Bottom. The cell faces are
identified at the face center and named with lower-case letters, namely the e, w, n, s, t,
and b. The Cartesian coordinate system is selected for describing both the geometrical
and flow properties, being the z axis defines the bottom-to-top direction.

It is to be noted, however, that the grid in this model is selected such that the cell faces e,
w, n, and s are parallel to the z axis. This choice is taken to facilitate the handling of the
surface boundary. The discretisation of the governing equation, nevertheless, is carried
out for general non-orthogonal cells.

1

2

3

4

5

8

6

7

ex

e y
ez

z,w

x,u

y,v
P

E

W

N

S

T

B

w

e

n

s

t

b

St

Ss

SnSw

Se

Sb

Fig. 4.2 Typical hexahedron control volume.

The dependent variables, φ (u,v,w,p,k,ε), are defined at the cell center P, thus constituting
a cell-centered non-staggered grid. Non-staggered grid variable arrangements may yield
a problem of pressure-velocity decoupling that creates a spurious oscillation in the
solution. This problem does not exist with the use of staggered grid. However, staggered
grids require separate control volumes for the velocity and other dependent variables that

– 4.9 –

increase the computer storage requirement. For flows with three-dimensional geometry,
the storage space required for additional control volumes is enormous. In addition, the
non-orthogonality of the cells gives another complexity since the velocity components
are not related to the alignment of the cell face. This makes the non-staggered grid is
more suitable for 3D problems. To avoid the problem of pressure-velocity decoupling,
use is made of the interpolation method according to Rhie and Chow (Rhie and Chow,
1983). This method consists of determining the convective velocities on a non-staggered
grid through the use of the discretized momentum equation, thus coupling the pressure
field with the velocity field. The standard method for staggered grids, the SIMPLE
(Patankar and Spalding, 1972), is then used to correct the pressure. The SIMPLE, an
acronym for Semi-Implicit Method for Pressure-Linked, has been successfully employed
for flow computations in two-dimensional problems (Kobayashi and Pereira, 1991; Obi
et al., 1989; Ferziger and Peric, 1997) as well as three-dimensional cases (Olsen and
Kjellesvig, 1998; Wu et al., 2000). The present model adopts a similar method.

4.3.2 Computation of the surface area and of the cell volume

Cell-face area

The surface vector of the cell faces can be evaluated from the vector products of the
diagonals. As can be seen in Fig. 4.3, the area of the east face, quadrilateral 5678, is half
of that of parallelogram ABCD built on the diagonals 57 and 68 (note the use of the
clockwise convention, seen from the cell center, to index the corners). Hence the surface
vector is (Hirsch, 1988, p. 247):

S5678 = 1
2 SABCD = 1

2

! e x
! e y

! e z
Δx57 Δy57 Δz57
Δx68 Δy68 Δz68

"

$
$
$

%

&

'
'
'

= 1
2

! e x
! e y

! e z
x7 − x5() y7 − y5() z7 − z5()
x8 − x6() y8 − y6() z8 − z6()

"

$
$
$

%

&

'
'
'

 (4.16)

When the cell face is not coplanar, the above expression gives the projection area of two
triangles sharing a common side 57 or 68. The unit vector normal to a cell face is
computed as follows:

! e n = S S (4.17)

The normal distance from point P to the east face can then be defined as δn = LPe ⋅
! e n()e ,

where LPe is the vector originating from P to face center e (note that LeP = −LPe).

– 4.10 –

Cell volume

The cell volume is obtained by dividing the hexahedron into six tetrahedrons sharing one
common diagonal 17 and one crest 1. Hence with L17 = L7 − L1 , where L1 and L7 are
the position vectors of 1 and 7, the cell volume is thus:

V 12345678 = V 1857 + V 1567 +V 1627 +V 1237 +V 1347 + V 1487

= 1
6 L17 ⋅ L18 × L15() + L15 × L16() +[{ L16 × L12() +

L12 × L13() + L13 × L14() + L14 × L18()]}
 (4.18)

in which Lmn = Δxmn
! e x + Δymn

! e y + Δzmn
! e z = xn − xm()! e x + yn − ym() ! e y + zn − zm()! e z

A

C

D

B

5

6

7
8

1
1

2
2

3

6

7
7

1

1

7
7

4
4

3

8

1

2

3
4

5

6

7
8
P

e

w

s

n

t

b

1
1

7

6

78

5
5

Fig. 4.3 Evaluation of the surface vector and cell volume.

– 4.11 –

4.3.3 Cell-face interpolation and gradient computation

Cell-face interpolation

Non-staggered grids define all computed variables at the cell centers. When values at the
cell face are required, linear interpolation applies. Writing for the east face, the linear
interpolation takes the following form:

φ()e = 1 −βe()φP + βe φE (4.19)

with the interpolation factor βe defined as: βe = LPe LPE .

This expression is extensively used in the model, except in two cases, namely (a) when
evaluating convective terms by using upwind differences (Sect. 4.3.5), and (b) when
computing interpolated coefficients and starred velocities in the pressure-correction
equation (Sect. 4.4).

Gradients

The Gauss theorem provides the gradient at the cell center. The gradients along the x, y,
and z directions read (Hirsch, 1988, p. 253):

∂φ

∂x

$

%
& P

≈
1
V

∇(φ ! e x) dV
V ∫∫∫ =

1
V

φ
! e xS∫∫ ⋅ dS ≈

1
V P

φ Sx()cf
cf=ewnstb
∑

∂φ

∂y

$,

%
& - P

≈
1
V

∇(φ ! e y) dV
V ∫∫∫ =

1
V

φ
! e yS∫∫ ⋅dS ≈ 1

V P
φ Sy()cf

cf= ewnstb
∑

∂φ

∂z

$

%
& P

≈
1
V

∇(φ ! e z) dV
V ∫∫∫ =

1
V

φ
! e zS∫∫ ⋅dS ≈ 1

V P
φ Sz()cf

cf= ewnstb
∑

 (4.20)

The summation extends over the six cell faces, cf: the east, west, north, south, top, and
bottom. The dependent variable at the cell face, φcf, is obtained by linear interpolation of
the variables at the two intermediate neighboring cell centers (see Eq. 4.19). The same
linear interpolation is applied when gradients are needed at the cell face. Using an
overbar symbol to denote linear interpolated values, the gradients at the east face read:

∂φ
∂x

$

%
& e

= 1 − βe() ∂φ
∂x

$

%
& P

+βe
∂φ
∂x

$

%
& E

∂φ

∂y

$)

%
& * e

= 1 − βe() ∂φ

∂y

$)

%
& * P

+βe
∂φ

∂y

$)

%
& * E

∂φ

∂z

$

%
& e

= 1 − βe() ∂φ

∂z

$

%
& P

+βe
∂φ

∂z

$

%
& E

 (4.21)

– 4.12 –

4.3.4 Discretisation of the time derivative terms

The (pseudo-) time derivative term serves as a global iteration that embodies the iterative
solution procedure as described in Sect. 4.2. The time iteration can be considered as an
iteration level marking the progress of the surface computation since the surface
boundary is updated at the end of a time step. The solution of Eq.4.15 at a given time step
(n-iteration) designates an intermediate solution. The final solution will be achieved when
the iteration converges towards the steady-state solution. For an intermediate solution, a
simple first-order finite-difference scheme can be appropriately used to evaluate the time
derivative of Eq. 4.15:

∂

∂t
φ dV ≈ φ

n+1 − φn

ΔtV ∫∫∫ V n (4.22)

The cell volume V is explicitly defined at time level n (V n), since the new geometry of
the computational domain is not yet known a priori. This applies also to all geometrical
parameters such as surface area (Sn) and spatial coordinate and distance (xn, yn,z n,Ln).

In solving Eq. 4.15 for φn+1, iterations have to be carried out to handle the non-linear
terms. As shown in Fig. 4.1, there are two iteration loops, the ℓ - and m-iterations, in
arriving to φn+1 from known values φn . When these iterations converge, that is ℓ = ∞
and m = ∞, we have φ

n+1 = φn ,ℓ≈∞,m≈∞ . Eq. 4.22 thus can be approximated as:

∂

∂t
φ dV ≈ φ

n+1 − φn

ΔtV ∫∫∫ V n = V n,ℓ=1

Δt
φn,ℓ+1 − φn,ℓ=1() (4.23)

The variable index ℓ is used to refer either ℓ - or m-iteration. With this approach, the
transport equation, Eq. 4.15, can be rewritten as:

V n,ℓ =1

Δt
φn ,ℓ+1 − φn,ℓ =1()

time derivation
" # $ $ $ $ % $ $ $ $

+ φV
S∫∫ ⋅dS[]n→n+1

convection
" # $ $ $ % $ $ $

− Γ∇φ ⋅dS
S∫∫[]n→n +1

diffusion
" # $ $ $ % $ $ $

= R dV
V ∫∫∫[]n→n+1

source
" # $ $ $ % $ $ $

 (4.24)

The pseudo-time index n→ n +1 is introduced to indicate the progress of the iterations
n, m, and ℓ , used to evaluate the terms in bracket. Since the geometrical parameters are
all evaluated at time level n, the convection-diffusion and the source terms contain
explicit terms. The scheme is thus explicit. The pseudo-time step, Δt, is related to the
under-relaxation factor used in the iterative procedure of the pressure computation; this
will be discussed later in Sect. 4.4.3.

– 4.13 –

4.3.5 Discretisation of the convective terms

The discrete form of the convective terms in Eq. 4.24 for cell P reads:

FC()P

n→n+1
= φℓ+1 V()n ⋅ d" S ()

n

S∫∫
%
& '

(
) * P
≈ φℓ+1 V()n ⋅ " S ()

n%
& '

(
) * cfcf=ewnstb

∑ (4.25)

The usual convention of the summation index applies, that is the summation runs over the
six cell faces: the east, west, north, south, top, and bottom. The evaluation of the
convective transport through the east face is elaborated in the following paragraphs and a
similar approach applies to the other faces.

FC()e
n→n+1

= φ V ⋅S()e
n→n+1

= V ⋅S()e
n→n+1

φe
n→n+1

= uen,ℓSe, xn + ven,ℓSe, yn +wen,ℓ Se, zn() φen,ℓ+1 = qeℓ φeℓ+1
 (4.26)

In the above equation, qe is the discharge (the mass flux per unit mass) normal to the east
face. For simplicity, the time index ‘n’ is omitted and the notation qe

ℓ stands for the
discharge obtained from ue

n,ℓ and Se
n . A linearisation has been applied to the convective

term in Eq. 4.26 by setting φ as the only unknown while taking the discharge, qe,
explicitly from the previous iteration.

The unknown variable at the east face, φe, is estimated by using upwind scheme, that is
by taking its value at the upstream control volume which depends on the flow direction
(Versteeg and Malalasekera, 1995, p. 115):

 φe
ℓ+1 = φP

ℓ+1 if qe
ℓ ≥ 0, φe

ℓ+1 = φE
ℓ+1 if qe

ℓ < 0 (4.27)

The convective flux across the east face, Eq. 4.26, is then:

FC()e

n→n+1
= max qe

ℓ ,0[] φPℓ+1 −max −qeℓ ,0[] φEℓ+1 (4.28)

Note that the discharge, qe, is a scalar product of the velocity and the surface vector and it
has a positive sign when leaving the cell. Thus the discharge across the west cell face of
cell P is equal to the opposite value of that across the east face of cell W. The same is true
for the other cell faces. The discharge across the north or top faces of cell P is equal to the
opposite value of that across the south or bottom face of cells N or T, respectively. This
property has to be kept in the calculation of the convective flux in order to maintain the
flux consistency. The convective flux leaving the cell P across the east face is equal to
that entering cell W; otherwise a discrepancy occurs between neighboring cells. The
convective flux across the west face thus reads:

FC()w

n→n+1
= max qw

ℓ ,0[]φPℓ+1 − max −qwℓ ,0[]φWℓ+1 (4.28a)

– 4.14 –

4.3.6 Discretisation of the diffusive terms

The discrete form of the diffusive terms reads in Eq. 4.24 for cell P:

FD()n→n+1 = Γ ∇φ ⋅ dS[]n→n+1

S∫∫ ≈ Γ ∇φ ⋅S()cf
n→n+1

cf=ewnstb
∑ (4.29)

in which the summation extends over the six cell faces and the non-linear terms are
linearized as in the evaluation of the convection term. The diffusion across the east face is
elaborated and a similar approach applies for the other faces.

In evaluating the diffusive term across the east face, it is convenient to use a local
coordinate system attached to the east face as shown in Fig. 4.4. Across the east face,
Eq. 4.29 reads:

FD()e

n→n+1
= Γ ∇φ ⋅S()e

n→n+1
= Γe

n,ℓ ∂φ

∂n
'
(

)
* e

n,ℓ+1 " e n ⋅S()
e

n
 (4.30)

(a) (b)

E

P

e en

eξ

E

P

e en

eξ′e

Fig. 4.4 Evaluation of the diffusion terms across the east face

The evaluation of the normal gradient presents some difficulties for its y and z
components. Besides the variable at the neighbor cell E, additional ones at NE, SE, S, and
N might have to be taken into consideration. This would increase the number of
unknowns. To overcome this problem, the so called deferred-correction approach
(Ferziger and Peric, 1997) is selected in the present model, where only the immediate
neighbor cell needs to be considered. In this approach the normal gradient term is
evaluated implicitly by a simple approximation and a correction is added. The correction
is taken as the difference between the correct and approximate gradients; both are
explicitly obtained from the previous iteration. This correction is put in the source terms
at the right-hand side. The diffusion term evaluated with this approach reads (Ferziger
and Peric, 1997, pp. 218-222):

– 4.15 –

FD()e
n→n+1

= Γe
ℓ Se

∂φ

∂ξ

&

' (
)

* + e

ℓ+1

+ Γe
ℓ Se

∂φ

∂n
&
'

)
* e

ℓ

−
∂φ

∂ξ

&

' (
)

* + e

ℓ-

.

/
/

0

1

2
2

correction, explicit
" # $ $ $ $ % $ $ $ $

 (4.31)

In the above expression, the time index n is omitted for simplicity and a term without any
index refers to the initial solution of the time step n→ n +1 (for example Se is constant
during a time step, Se = Se

n,ℓ =1). In the local coordinate, ξ is the direction of a straight
line joining P and E (see Fig. 4.4). An approximation is used to evaluate the gradient in
the implicit term of Eq. 4.31 where a central difference is used (Ferziger and Peric, 1997;
p. 224).

∂φ

∂ξ

$

% &
'

() e

ℓ+1

=
φE
ℓ+1 − φP

ℓ+1

LPE
 with LPE = LPE (4.32)

Substituting this relation to the implicit gradient, the diffusive flux reads:

FD()e
n→n+1

=
Γe
ℓ Se
LPE

$
%

&

'
(φE
ℓ+1 −

Γe
ℓ Se
LPE

$
%

&

'
(φP
ℓ+1 + Γe

ℓ Se
∂φ

∂n

$

&
' e

ℓ

−
∂φ

∂ξ

$ %
&

' (e

ℓ-

.

/
/

0

1

2
2

correction, exp licit
" # $ $ $ $ % $ $ $ $

 (4.33)

and for the west face, it reads:

FD()w
n→n+1

=
Γw
ℓ Sw
LPW

$
%

&

'
(φW
ℓ+1 −

Γw
ℓ Sw
LPW

$
%

&

'
(φP
ℓ+1 + Γw

ℓ Sw
∂φ

∂n

$

&
' w

ℓ

−
∂φ

∂ξ

$ %
&

' (w

ℓ-

.

/
/

0

1

2
2

correction, exp licit
" # $ $ $ $ % $ $ $ $

 (4.33a)

The explicit parts can be easily obtained since the Cartesian components of the gradient
are known from the previous computation.

∂φ

∂n

$

%
& e

ℓ

=
∂φ

∂x

$

%
& e

ℓ Se,x
Se

+
∂φ

∂y

$
'

%

&
(
e

ℓ
Se,y
Se

+
∂φ

∂z

$

%
& e

ℓ Se, z
Se

∂φ
∂ξ

$
'

%

&
(
e

ℓ

=
∂φ
∂x

$

%
& e

ℓ
ΔxPE
LPE

+
∂φ
∂y

$
'

%

&
(
e

ℓ
ΔyPE
LPE

+
∂φ
∂z

$

%
& e

ℓ
ΔzPE
LPE

 (4.34)

Applying Eq. 4.31 to the six cell faces gives 7 unknowns to the diffusion transport term
for each computational cell P. Errors due to the use of a simple central difference to
obtain diffusion across a cell face, Eq. 4.32, are minimized by the correction given in the
explicit part of Eq. 4.31. It shall be nevertheless noted that the error will be magnified
when the ξ direction of the cell face is far from its n-direction or when the east face
center does not coincide with the ξ line (see Fig. 4.4b).

– 4.16 –

4.3.7 Convective-diffusive terms: hybrid and power-law schemes

The convective upwind scheme, Eq. 4.27, is simple and easy to implement; it accounts
for the flow direction. The scheme, however, is first order accurate and produces
considerable error when diffusive transport is important. To avoid that problem, the so-
called hybrid scheme (Spalding, 1972) and power-law scheme (Patankar, 1980) give
formulae which combine the convective and diffusive transports in a special way.
Depending on the grid Peclet number Pe, being the ratio of the convective and diffusive
conductance, Pe = q L ΓS where L is the nodal distance, either the upwind-scheme
convection, central-difference diffusion, or combination of the two, is considered to
transport any scalar quantity φ across a cell face.

The hybrid scheme (Spalding, 1972) uses the upwind scheme for large Peclet numbers
(|Pe| ≥ 2) and central difference for small Peclet numbers (|Pe| < 2). According to this
scheme, the total flux across the east face, Fe = Fe

C − Fe
D , is defined as follows:

• for Pee = qeLPE ΓeSe < −2 , only the convective transport is taken into account:

 Fe
n→n+1 = qe

ℓ φE
ℓ +1 (4.35)

• for −2 ≤ Pee = qeLPE ΓeSe < 0 , a part of the diffusive transport is also taken into
consideration:

Fe
n→n+1 = qe

ℓ φE
ℓ +1 − 1 + 0.5Pee() Γe

ℓ Se
LPE

φE
ℓ+1 − φP

ℓ+1() + Γe
ℓ Se

∂φ

∂n
&
'

(
) e

ℓ

−
∂φ

∂ξ

&

' +
(

) , e

ℓ-

.

/
/

0

1

2
2

3
4
5

6 5

7
8
5

9 5
 (4.36)

• for 0 ≤ Pee = qeLPE ΓeSe < 2 , a part of the diffusive transport is also taken into
consideration:

Fe
n→n+1 = qe

ℓ φP
ℓ +1 − 1 − 0.5Pee() Γe

ℓ Se
LPE

φE
ℓ+1 − φP

ℓ+1() + Γe
ℓ Se

∂φ

∂n
&
'

(
) e

ℓ

−
∂φ

∂ξ

&

' +
(

) , e

ℓ-

.

/
/

0

1

2
2

3
4
5

6 5

7
8
5

9 5
 (4.37)

• for Pee = qeLPE ΓeSe > 2 , only the convective transport is taken into account:

 Fe
n→n+1 = qe

ℓ φP
ℓ +1 (4.38)

The power-law scheme (Patankar, 1980, p. 90-91) sets the limiting value of Pe where the
diffusion no longer affects the transport at Pe = 10, instead of Pe = 2 used in the hybrid
scheme.

• for Pee = qeLPE ΓeSe < −10 :

 Fe
n→n+1 = qe

ℓ φE
ℓ +1 (4.39)

– 4.17 –

• for −10 ≤ Pee = qeLPE ΓeSe < 0 :

Fe
n→n+1 = qe

ℓ φE
ℓ +1 − 1 + 0.1Pee()5 Γe

ℓ Se
LPE

φE
ℓ+1 − φP

ℓ+1() + Γe
ℓ Se

∂φ

∂n
&
'

(
) e

ℓ

−
∂φ

∂ξ

&

' +
(

) , e

ℓ-

.

/
/

0

1

2
2

3
4
5

6 5

7
8
5

9 5
 (4.40)

• for 0 ≤ Pee = qeLPE ΓeSe < 10:

Fe
n→n+1 = qe

ℓ φP
ℓ +1 − 1 − 0.1Pee()5 Γe

ℓ Se
LPE

φE
ℓ+1 − φP

ℓ+1() + Γe
ℓ Se

∂φ

∂n
&
'

(
) e

ℓ

−
∂φ

∂ξ

&

' +
(

) , e

ℓ-

.

/
/

0

1

2
2

3
4
5

6 5

7
8
5

9 5
 (4.41)

• for Pee = qeLPE ΓeSe >10 :

 Fe
n→n+1 = qe

ℓ φP
ℓ +1 (4.42)

Equations 4.35 to 4.42 can be combined into a compact form as follows (Patankar, 1980,
pp. 94-95):

Fe
n→n+1 = max qe

ℓ,0[] φPℓ+1 −max −qeℓ,0[] φEℓ+1

−fe
D Γe

ℓ Se
LPE

φE
ℓ+1 − φP

ℓ+1() + Γe
ℓ Se

∂φ

∂n
&
'

(
) e

ℓ

−
∂φ

∂ξ

&

'
+

(

)
,
e

ℓ-

.

/
/

0

1

2
2

3
4
5

6 5

7
8
5

9 5

 (4.43)

where fD is a factor that depends on the absolute value of grid Peclet number; it has a
different form for the hybrid and power-law schemes as shown in Table 4.3.

Table 4.3 Hybrid and power-law scheme diffusion factors.

Scheme f D = f Pe() = f qL ΓS()

Hybrid max 1− 0.5 Pe() , 0[]

Power-law max 1− 0.1Pe()5 , 0[]

– 4.18 –

Arranging the terms in Eq. 4.43, one has:

Fe
n→n+1 = max qe

ℓ,0[] + fe
D Γe

ℓ Se
LPE

$
%

&
'
(
φP
ℓ+1 + −max −qe

ℓ ,0[] − feD Γe
ℓ Se
LPE

$
%

&
'
(
φE
ℓ+1

implicit
" # $ $ $ $ $ $ $ $ $ $ $ $ $ % $ $ $ $ $ $ $ $ $ $ $ $ $

−fe
D Γe

ℓ Se
∂φ

∂n
,
-

.
/ e

ℓ

−
∂φ

∂ξ

,

- 1
.

/ 2 e

ℓ3

4

5
5

6

7

8
8

$
9

% 9

&
'
9

(9

exp licit
" # $ $ $ $ $ % $ $ $ $ $

 (4.43a)

and for the west face, the convective-diffusive flux reads:

Fw
n→n+1 = max qw

ℓ ,0[] + fw
D Γw

ℓ Sw
LPW

$
%

&
'
(
φP
ℓ+1 + −max −qw

ℓ ,0[] − fwD Γw
ℓ Sw
LPW

$
%

&
'
(
φW
ℓ+1

implicit
" # $ $ $ $ $ $ $ $ $ $ $ $ $ % $ $ $ $ $ $ $ $ $ $ $ $ $

−fw
D Γw

ℓ Sw
∂φ

∂n
,
-

.
/ w

ℓ

−
∂φ

∂ξ

,

- 1
.

/ 2 w

ℓ3

4

5
5

6

7

8
8

$
9

% 9

&
'
9

(9

explicit
" # $ $ $ $ $ $ % $ $ $ $ $ $

 (4.43b)

Shorter notations is used to write the expression of the convective-diffusive flux, for
example Eq. 4.43a maybe rewritten as Fe

n→n+1 = aP
C + aP

D()φPℓ+1 + a EC + a ED()φEℓ+1 + bED , in
such a way that by summing up the convective-diffusive fluxes across the six faces of
cell P, one obtains:

Fn→n+1 = aEC + aED()φEℓ+1 + aWC + aWD()φWℓ+1 + aNC + aND()φNℓ +1 + aSC + aSD()φSℓ+1 +
a T
C + a T

D()φTℓ +1 + aB
C + aB

D()φBℓ+1 + aP
C + a P

D()φPℓ+1 + bD
 (4.44)

where the coefficients indicate contribution of convective-diffusive terms from
neighboring cells as presented in Table 4.4. The diffusive-correction terms, being
evaluated explicitly, are known from the previous iteration and are included in the
independent coefficient bD.

– 4.19 –

Table 4.4 Coefficients of the discretized convective-diffusive equations.

Convective terms Diffusive terms

 aE
C = −max −qe

ℓ ,0[] aE
D = −fD Γe

ℓSe LPE

 aW
C = −max −qw

ℓ , 0[] aW
D = −f D Γw

ℓ Sw LPW

 aN
C = −max −qn

ℓ ,0[] aN
D = −f D Γn

ℓ Sn LPN

 aS
C = −max −qs

ℓ ,0[] aS
D = −fD Γs

ℓSs LPS

 aT
C = −max −qt

ℓ ,0[] aT
D = −fD Γt

ℓSt LPT

 aB
C = −max −qb

ℓ ,0[] aB
D = −fD Γb

ℓSb LPB

aP
C = −a nb

C

nb=EWNSTB
∑ + qcf

ℓ

cf= ewnstb
∑ aP

D = −anb
D

nb=EWNSTB
∑

—

bD = − fDΓℓS()cf
∂φ

∂n
%
&

'
(cf

ℓ

−
∂φ

∂ξ

%

& *
'

(+ cf

ℓ,

-

.

.

/

0

1
1 cf= ewnstb

∑

4.3.8 Source terms

The source terms may consist of scalar quantities, first derivatives, or second derivatives
of a scalar quantity. The source, in addition, may also include the time integration term,
the diffusion correction, and known variables from the boundary conditions. Sometimes a
term initially considered as a source takes advantage to be expressed as a function of the
unknown variable at the cell center, such as cells next to a boundary. In that case, the
term is linearized which gives (Versteeg and Malalasekera, 1995, p. 87):

R dV

V ∫∫∫ ≈ R V P = b + bP φP
ℓ+1 (4.45)

in which b includes all known quantities (either constants, prescribed, or known from
previous iteration) and bP is the coefficient of the unknown variable at P.

Scalar source terms

The source term containing scalar quantities, bS, comes from the gravity accelerations, gx,
gy, gz, or the turbulent energy production and dissipation, G and ε. The scalar source at P
represents the average value of those quantities in the cell being considered. It is known
and thus is considered as a constant. Therefore, the source terms containing scalar
quantities can be easily evaluated according to the following expression:

– 4.20 –

bS = φℓ dV

V ∫∫∫ = φP
ℓ V P (4.46)

In applying the above relation to the source terms of the k equation coming from the
turbulent energy production, G, some approximations are needed. Writing Eq. 4.46 for G,
we have:

G dV
V ∫∫∫ = GP V P

Since the G term contains non-linear gradient terms (see Eq. 4.12), the above relation
implies that these terms are evaluated individually (that is by using Eq. 4.20). This means
that the integral of these terms are computed in the following fashion (an example is
given here for the ∂u ∂x()2 term):

∂u
∂x
"

$
%

2

dV
V ∫∫∫ =

∂u
∂x
"

$
% P

2

V P =
1

V P
∂u
∂x

dV
V ∫∫∫

"

'

$

%
(

2

V P

This approximation, of course, will be inaccurate when the velocity gradient is important.
Nevertheless, this method is selected for its easiness to implement.

In the ε equation, the source term is linearized for the term containing ε2 in the following
form:

b = c1
εG
k

"

$
% P

ℓ

V P

bS
" # $ $ % $ $

−c2
ε

k
"

$
% P

ℓ

V P

b P
S

" # $ $ % $ $
εP
ℓ+1 (4.47)

the last term of which will join the coefficient aP.

First derivative source terms

The source term containing first derivatives, b1D, is found in the pressure gradient of the
momentum equation and in the velocity gradient of the energy production for the k-ε
equations. Following the method described in Sect. 4.3.3, the source terms containing
first derivatives in the x-, y-, and z-directions are evaluated as follows (the terms within
brackets are generally predominant):

b1D()x =
∂φ

∂x

$

%
&

ℓ

dV
V ∫∫∫ = ∇(φℓ " e x) dV

V ∫∫∫ ≈ φℓ
" e x ⋅ dS

S∫∫ = φℓ Sx()cf
cf=ewnstb
∑

= φe
ℓ Se,x + φw

ℓ Sw,x() + φn
ℓ Sw,x + φs

ℓSs,x + φ t
ℓ St,x + φb

ℓ Sb,x

 (4.48a)

– 4.21 –

b1D()y =
∂φ
∂y

$
%

&

'
(

ℓ

dV
V ∫∫∫ = ∇(φℓ " e y) dV

V ∫∫∫ ≈ φℓ
" e y ⋅ dS

S∫∫ = φℓ Sy()cf
cf=ewnstb
∑

= φn
ℓ Sn,y + φs

ℓ Ss,y() + φt
ℓ St,y + φb

ℓ Sb,y + φe
ℓSe,y + φw

ℓ Sw,y

 (4.48b)

b1D()z =
∂φ

∂z

$

%
&

ℓ

dV
V ∫∫∫ = ∇(φℓ " e z) dV

V ∫∫∫ ≈ φℓ
" e z ⋅ dS

S∫∫ = φℓ Sz()cf
cf= ewnstb
∑

= φ t
ℓ St, z + φb

ℓ Sb, z() + φe
ℓ Se,z + φw

ℓ Sw,z + φn
ℓ Sw, z + φs

ℓSs, z

 (4.48c)

Second derivative source terms

The source term containing second derivatives, b2D, is found in the momentum equation.
These are due to the non-orthogonal terms of the stresses (see Eqs. 4.6 to 4.8) and the
explicit parts of the diffusion terms (see Eq. 4.43). An example is given below for the
evaluation of the source terms containing second derivatives in the u-momentum
equation.

b2D()x =
∂

∂x
ν t
∂u
∂x

$

%
&

ℓ

dV
V ∫∫∫ = ∇ νt

∂u
∂x

$

%
&

ℓ " e x
)

*
+
+

,

-
.
.

dV
V ∫∫∫

= νt
∂u
∂x

$

%
&

ℓ " e x ⋅ dS
S∫∫ ≈ νt

∂u
∂x

$

%
&

ℓ

Sx
)

*
+
+

,

-
.
. cfcf

∑

= νt()e

ℓ ∂u
∂x

$

%
& e

ℓ

Se,x + ν t()w

ℓ ∂u
∂x

$

%
& w

ℓ

Sw,x + νt()n

ℓ ∂u
∂x

$

%
& n

ℓ

Sn,x +

ν t()s
ℓ ∂u
∂x

$

%
& s

ℓ

Ss,x + ν t()t
ℓ ∂u
∂x

$

%
& t

ℓ

St,x + νt()b
ℓ ∂u

∂x

$

%
& b

ℓ

Sb,x

 (4.49a)

b2D()y =
∂

∂y
νt
∂v
∂x

$

%
&

ℓ

dV
V ∫∫∫ = ∇ ν t

∂v
∂x

$

%
&

ℓ " e y
)

*
+
+

,

-
.
.

dV
V ∫∫∫

= ν t
∂v
∂x

$

%
&

ℓ " e y ⋅ dS
S∫∫ ≈ ν t

∂v
∂x

$

%
&

ℓ

Sy
)

*
+
+

,

-
.
. cfcf

∑

= νt()n

ℓ ∂v
∂x

$

%
& n

ℓ

Sn,y + ν t()s

ℓ ∂v
∂x

$

%
& s

ℓ

Ss,y + νt()t

ℓ ∂v
∂x

$

%
& t

ℓ

St,y +

ν t()b
ℓ ∂v
∂x

$

%
& b

ℓ

Sb,y + ν t()e
ℓ ∂v
∂x

$

%
& e

ℓ

Se,y + νt()s
ℓ ∂v

∂x

$

%
& w

ℓ

Sw,y

 (4.49b)

– 4.22 –

b2D() z =
∂

∂z
νt
∂w
∂x

$

%
&

ℓ

dV
V ∫∫∫ = ∇ ν t

∂w
∂x

$

%
&

ℓ " e z
)

*
+
+

,

-
.
.

dV
V ∫∫∫

= νt
∂w
∂x

$

%
&

ℓ " e z ⋅ dS
S∫∫ ≈ νt

∂w
∂x

$

%
&

ℓ

Sz
)

*
+
+

,

-
.
. cfcf

∑

= ν t()t

ℓ ∂w
∂x

$

%
& t

ℓ

St,z + νt()b

ℓ ∂w
∂x

$

%
& b

ℓ

Sb, z + ν t()e

ℓ ∂w
∂x

$

%
& e

ℓ

Se, z +

ν t()w
ℓ ∂w

∂x

$

%
& w

ℓ

Sw, z + νt()n
ℓ ∂w

∂x

$

%
& n

ℓ

Sn ,z + νt()s
ℓ ∂w

∂x

$

%
& s

ℓ

Ss, z

 (4.49c)

The last four terms on the right-hand side are due to the grid non-orthogonality; they
vanish for orthogonal cells. The cell face values of the velocity gradients are obtained by
linear interpolation (see Sect. 4.3.3 and Eq. 4.21).

4.3.9 Assembly of the coefficients

After evaluating all terms of the convection, diffusion, and sources over the entire
computational domain and rearranging the coefficients, the discretized transport equation
produces a series of algebraic equations. For the unknown variable φ at the cell center P,
φP(x,y,z,t), and at the neighboring cell centers nb, φnb(x,y,z,t), the equation reads:

aP φP

ℓ+1 + anb φnb
ℓ+1

nb
∑ = b (4.50)

The coefficients anb, aP, and b in the above equation are listed below:

• coefficients anb consist of the convective and diffusive terms (see Table 4.4):

aE = aE
C + aE

D = −max −qe
ℓ,0[] − fe

D ΓS
LPE

$
%

&

'
(

e

ℓ

,

aW = aW
C + aW

D = −max −q w
ℓ ,0[] − fw

D ΓS
L PW

$
%

&

'
(

w

ℓ

,

aN = aN
C + aN

D = −max −qn
ℓ ,0[] − fn

D ΓS
LPN

$
%

&

'
(

n

ℓ

,

aS = aS
C + aS

D = −max −qs
ℓ ,0[] − fs

D ΓS
LPS

$
%

&

'
(

s

ℓ

,

aT = aT
C + aT

D = −max −qt
ℓ ,0[] − ft

D ΓS
LPT

$
%

&

'
(

t

ℓ

, and

– 4.23 –

aB = aB

C + aB
D = −max −qb

ℓ ,0[] − fbD ΓS
LPB

$
%

&

'
(
b

ℓ

.

• coefficient aP is formed from various terms, namely the pseudo-temporal integration,
convective-diffusive terms (Table 4.4), and terms coming from the source
linearisation (see Eq. 4.47):

aP = a P
T + a P

C + a P
D − bP

=
V P
Δt

+ −anb
C

nb
∑ + qcf

cf
∑

$

%
&

'

(
) + −a nb

D

nb
∑
$

%
&

'

(
) − bP

• source terms, b:

b = bS + b1D()x + b1D()y + b1D() z + b2D()x + b2D()y + b2D()z + b
T − bD

bS — scalar sources: Eq. 4.46 or 4.47,
b1D — first derivative sources: Eqs. 4.48,
b2D — second derivative sources: Eqs. 4.49,

bT =
V P
Δt

φP
n — pseudo-time derivative source: Eq. 4.22, and

bD = − fDΓℓS()cf
∂φ

∂n
%
&

'
(cf

ℓ

−
∂φ

∂ξ

%

& *
'

(+ cf

ℓ,

-

.

.

/

0

1
1 cf

∑ — diffusive correction terms: Eq. 4.43.

Note that for the boundary cells, the coefficients may change from the above definitions.
This will be described in Sect. 4.5.

Under-relaxation factor

The solution of Eq. 4.50 for any dependent variable φ through out the computational
domain is achieved by iterative procedure, marching from known values at the iteration
level ℓ to new values at the iteration ℓ +1 . During the process, oscillation may occur. In
order to avoid such a problem, an under-relaxation factor is applied to updating the
solution from iteration ℓ to ℓ +1 . Suppose that the solution at a particular iteration level
is ˜ φ P , thus:

aP

˜ φ P + anb φnb
ℓ+1

nb
∑ = b (4.50a)

Now, instead of taking that solution for the value of φP
ℓ+1 , one may take also into the

consideration its value at the previous iteration level, φP
ℓ , arguing that φP

ℓ+1 should not too
much different from φP

ℓ . The under-relaxation factor, ϖ, is then applied according to the
following form:

– 4.24 –

φP
ℓ+1 = ϖ ˜ φ P + 1− ϖ()φP

ℓ , or ˜ φ P =
1
ϖ
φP
ℓ+1 −

1 − ϖ
ϖ

φP
ℓ (4.51)

Substituting this relation to the term ˜ φ P in Eq. 4.50a, one finds:

aP

1
ϖ
φP
ℓ+1 −

1 − ϖ
ϖ

φP
ℓ$

%
&
' + anbφnb

ℓ+1

nb
∑ = b

which, after some arrangements of the terms, yields:

˜ a PφP

ℓ+1 + anbφnb
ℓ+1

nb
∑ = ˜ b (4.52)

where the coefficients are now:

˜ a P =

a P

ϖ
 and ˜ b = b + 1− ϖ()

aP

ϖ
φP
ℓ = b + 1 − ϖ()˜ a P φP

ℓ

4.4 Pressure-velocity coupling

4.4.1 SIMPLE algorithm

When solving the momentum equation for velocity, the pressure is unknown and an
estimated value, p∗ , is firstly used instead. In general, the velocity that is obtained does
not satisfy the continuity equation. A correction to the estimated pressure is added and a
new solution is sought for the new velocity. This procedure is repeated until it gives
pressure and velocity fields satisfying not only the momentum equation but also the
continuity equation. An iterative solution procedure known as SIMPLE (Semi-Implicit
Method for Pressure-Linked Equation) method (Patankar and Spalding, 1972) is widely
used for this velocity-pressure computation. The method requires velocity and discharge
at cell faces, which are not immediately available with the use of non-staggered grids in
the present model. The interpolation technique of Rhie-and-Chow (Rhie and Chow, 1983)
solves this problem. The technique gives interpolated velocity at cell faces from the nodal
values. The standard SIMPLE algorithm is then used to perform the pressure correction.
This section gives some details of the procedure, which follows the derivation given by
Patankar (Patankar and Spalding, 1972; Versteeg and Malalasekera, 1995; Ferziger and
Peric, 1997).

In the iteration ℓ→ ℓ+1 , the discretized momentum equation, Eq. 4.52 with φ = u, v, w,
can be rewritten as:

˜ a P ui,P

ℓ+ 1 + anbui ,nb
ℓ+ 1

nb
∑ = ˜ b − 1

ρ
V P

∂pℓ+ 1

∂xi

%

&
'

(

)
*

P

 (4.53)

– 4.25 –

where the symbols u i and xi are used to denote the Cartesian components of the velocity
and direction, u i = u, v, w and xi = x, y, z , respectively. Note that the pressure gradient
in the above expression has intentionally been extracted from the source term,

⌢
b , for a

reason that will be evidenced later (˜ b in Eq. 4.53 is thus not exactly the same as that in
Eq. 4.52).

The coefficients ˜ a P , anb , and the source terms, ˜ b , are functions of the known variables
either at the precedent iteration, ℓ , or time step, n. For practical solutions of Eq. 4.53,
since there are only 3 equations for 4 unknowns, the pressure p is temporarily fixed at its
initial value. The following system of equations is solved in the first stage:

˜ a P ui,P
∗ + a nbu i,nb

∗

nb
∑ = ˜ b − V P

ρ

∂p∗

∂xi

&

'
(

)

*
+

P

 (4.54a)

 p
∗ = pℓ (4.54b)

The estimated pressure, p∗ , and the velocities obtained from this pressure, u∗, v∗,w∗ , are
of course to be corrected:

 u i
ℓ+1 = ui

∗ + ui
c (4.55a)

 p
ℓ+1 = p∗ + pc (4.55b)

where the corrections, u i
c and pc , will result from the momentum equations combined

with the continuity equation. The corrections are such that the velocity will satisfy the
continuity and momentum equations when the iteration converges. It can therefore be
said that Eqs. 4.54a,b become Eq. 4.53 when ℓ→ ∞ . In that case, having a sufficiently
large number of ℓ -iterations, we have u i

∗()ℓ→∞
= ui

ℓ+1 ; and this is so for the coefficients
and source terms. We can therefore obtain the relation between the pressure and velocity
corrections by subtraction of Eqs. 4.54a,b from Eq. 4.53:

˜ a P ui,P
c + a nbu i,nb

c =
nb
∑ −

V P
ρ

∂pc

∂xi

%

&
'

(

)
*

P

 (4.56)

Eq. 4.56 is a relation in which the corrections tend towards zero. A simplifying
approximation can then be introduced by neglecting à priori the correction terms of the
neighboring cells (Patankar and Spalding, 1972). The velocity correction thus reduces to:

u i,P
c = −

1
ρ

V P
˜ a P

∂pc

∂xi

$

%
&

'

(
)

P

 (4.57)

Since the coefficient
⌢ a P is derived in such a way that it is the same for all velocity

components, i.e. ˜ a P
u = ˜ a P

v = ˜ a P
w = ˜ a P , the above relation is valid for any velocity

– 4.26 –

component at any point and thus also for the normal velocity component at a cell face.
Writing for the east face, one has:

un, e
c = −

1
ρ

V
˜ a

$

%
& e

∂pc

∂n

$
(

%

&
)

e

 (4.58)

The coefficient at the cell face, V ⌢ a ()e , is defined as the average value of those of the
neighboring cell centers P and E:

V
˜ a

!
"

$ e

=
1
2

V
˜ a P

!

"
%

$
&

P

+
V
˜ a P

!

"
%

$
&

E

'

(
)
)

*

+
,
,
 (4.59)

Note that ˜ a P()E represents the coefficient ˜ a P of Eq. 4.52 written for the cell E, that is not
the coefficient aE of Eq. 4.52 written for the cell P. Note also that the interpolation in
Eq. 4.59 does not match the linear interpolation in Eq. 4.19 since this latter is not relevant
for the volumes. Indeed the volume related to a cell for the east face is composed of the
half volume of cell P and the half volume of cell E. Using the deferred-correction method
as in the discretisation of the diffusive terms (see Sect. 4.3.6, Eq. 4.31) to compute the
normal pressure gradient yields:

un, e
c = −

1
ρ

V
˜ a

$

%
& e

pE
c − pP

c

LPE

'

(
)

*

+
,

un,e
impl : implicit

! " # # # $ # # #
−

1
ρ

V
˜ a

$

%
& e

∂pc

∂n

$
.

%

&
/

e

−
∂pc

∂ξ

$
.

%

&
/

e

'

(
)
)

*

+
,
,

old

un, e
no : explicit

! " # # # # # # $ # # # # # #

 (4.60)

in which the terms in the second square bracket are due to non-orthogonality of the cell
and are evaluated explicitly. From the starred-velocity and the velocity correction, the
normal velocity component can be computed:

un, e = un,e
∗ + un,e

c = un, e
∗ + un, e

impl + un ,e
no (4.61)

Here the velocity correction due to the cell non-orthogonality is written separately.
Whilst the velocity correction is obtainable from Eq. 4.60, the starred-velocity
unfortunately is not directly available at the cell face. Interpolating the starred velocity at
the neighboring cell centers to get the cell face value would result in the decoupling of
the velocity from the pressure that causes an oscillation of the solution. A remedy to this
problem is to use the so-called Rhie-and-Chow interpolation technique (Rhie and Chow,
1983) which replaces the interpolated pressure gradient at a cell face with the one
computed from the pressure at the immediate neighboring cell centers. As can be seen in
the relation below, writing the equivalent of Eq. 4.54a at the east face by simply
interpolating these starred velocities would result in velocities that have no direct relation
with the pressure difference between P and E:

– 4.27 –

un
∗()e

=
˜ b − a nbun, nb

∗∑
˜ a P

$

%
&

'

(
)

e

−
1
ρ

V
˜ a

$
%

'
(e

∂p∗

∂n
$

%
&

'

(
)

e

 (4.62)

In order to relate the velocity at the east face back to the pressure difference between P
and E, a correction is given to this interpolated velocity:

un, e
∗ =

˜ b − anbun, nb
∗∑

˜ a P

$

%
&

'

(
)

e

−
1
ρ

V
˜ a

$
%

'
(e

∂p∗

∂n
$

%
&

'

(
)

e

,

-

.

.

/

0

1
1

+
1
ρ

V
˜ a

$
%

'
(e

∂p∗

∂n
$

%
&

'

(
)

e

−
pE
∗ − pP

∗

LPE

,

-
.
.

/

0
1
1
 (4.63)

This expression can be seen as the velocities at the cell centers P and E interpolated to the
east face and corrected by a factor due to the interpolation:

un, e
∗ = un

∗()e + un, e
RC (4.64)

where the overbar term is obtained from linear interpolation of the velocities in cell
centers P and E. Using this expression to substitute the starred velocity in Eq. 4.61 gives:

un, e = un
∗()e + un, e

RC + un,e
impl + un, e

no (4.65)

Next, we need to define the equation of the pressure correction, which is carried out by
using the continuity equation. The discretized continuity equation can be obtained by
writing the governing equation, Eq. 4.15, with φ = 1, Γ = 0, and R = 0 that gives:

V ⋅d
!
S

S∫∫ ≈ V ⋅d
!
S ()
cfcf=ewnstb

∑ = qcf
cf= ewnstb
∑ = un,cf Scf()

cf=ewnstb
∑ = 0 (4.66)

Using Eq. 4.65 with the development of the implicit term in Eq. 4.60, and inserting the
result to the above continuity equation, one gets the pressure correction equation of the
form:

−
1
ρ

V
˜ a

$

%
& e

Se
LPE

pE
c − pP

c() − 1
ρ

V
˜ a

$

%
& w

Sw
LPW

pW
c − pP

c() − 1
ρ

V
˜ a

$

%
& n

Sn
L PN

pN
c − pP

c()

−
1
ρ

V
˜ a

$

%
& s

Ss

LPS
pS

c − pP
c() − 1

ρ

V
˜ a

$

%
& t

St

LPT
pT

c − pP
c() − 1

ρ

V
˜ a

$

%
& b

Sb

LPB
pB

c − pP
c()

+ q∗()cf
+ qcf

RC + qcf
no[]

cf= ewnstb
∑ = 0

 (4.67)

where:

q∗()cf
= ucf

∗() Scf,x + vcf
∗() Scf,y + wcf

∗() Scf,z interpolated discharge

– 4.28 –

qcf
RC =

1
ρ

V
˜ a

"

$
% cf

∂p∗

∂n
"

(

$

%
)

cf

−
pnb
∗ − pP

∗

LnbP

+

,
-
-

.

/
0
0

Scf correction due to cell - face interpolation

qcf
no = −

1
ρ

V
˜ a

$

%
& cf

∂pc

∂n

$
(

%

&
)

cf

−
∂pc

∂ξ

$
(

%

&
)

cf

+

,
-
-

.

/
0
0

old

Scf correction due to non - orthogonal terms

After arranging the terms, one has:

aP
p pP

c + anb
p pnb

c()
nb
∑ = bp (4.68)

where:

aE
p = −

1
ρ

V
˜ a

$

%
& e

Se
LPE

, aW
p = −

1
ρ

V
˜ a

$

%
& w

Sw
L PW

, aN
p = −

1
ρ

V
˜ a

$

%
& n

Sn
LPN

,

aS
p = −

1
ρ

V
˜ a

$

%
& s

Ss

LPS
, aT

p = −
1
ρ

V
˜ a

$

%
& t

St

L PT
, aB

p = −
1
ρ

V
˜ a

$

%
& w

Sb

LPB
,

aP
p = − anb

p

nb
∑ , bp = − q∗()cf

+ qcf
RC + qcf

no[]
cf
∑ .

The pressure gradients encountered in the source terms are computed according to the
following relations:

∂p∗

∂n

$
%

&

'
(
e

=
∂p∗

∂x

$
%

&

'
(
e

Se,x
Se

$
%

&

'
(+

∂p∗

∂y

$
%

&

'
(
e

Se,y
Se

$
%

&

'
(+

∂p∗

∂z

$
%

&

'
(
e

Se, z
Se

$
%

&

'
(

∂pc

∂n

$
%

&

'
(
e

=
∂pc

∂x

$
%

&

'
(
e

Se,x
Se

$
%

&

'
(+

∂pc

∂y

$
%

&

'
(
e

Se,y
Se

$
%

&

'
(+

∂pc

∂z

$
%

&

'
(
e

Se, z
Se

$
%

&

'
(

∂pc

∂ξ

$ %
&

' (e
=

∂pc

∂x

$ %
&

' (e

ΔxPE
LPE

$ %
&

' (
+

∂pc

∂y

$ %
&

' (e

ΔyPE
LPE

$ %
&

' (
+

∂pc

∂z

$ %
&

' (e

ΔzPE
LPE

$ %
&

' (

 (4.69)

in which the interpolation of the pressure gradients along the Cartesian coordinates is
done using Eq. 4.21.

4.4.2 Pressure correction procedure

The source term, bp , has pressure correction terms contained in the discharge due to non-
orthogonality of the cells, qe

no . These terms are evaluated explicitly by a double-step
pressure correction procedure as follows:

• Solve Eq. 4.68 for pc by neglecting the non-orthogonal terms, qcf
no = 0 , and correct the

velocities and pressure according to Eqs. 4.55a,b.

– 4.29 –

• Solve again Eq.4.4 with the non-orthogonal terms now available from the first step
and correct once again the velocities and pressure.

4.4.3 Under-relaxation factor and time step

To avoid instability of the computation, it is a common practice to put an under-
relaxation factor to the pressure correction, 0 ≤ ϖp ≤1 , in updating the pressure:

p = p∗ +ϖp pc (4.70)

As mentioned in Sect. 4.2, the time step plays also as an under-relaxation factor for
steady flow cases. This type of application, that is using the transient equations to solve
steady flows, is generally known as a pseudo-transient computation. In order to achieve
the effects of under-relaxed iterative steady-state computations from a given initial field
by means of a pseudo-transient computation starting from the same initial field, the time-
step size is taken such that (Fletcher, 1997, p. 365):

ϖp =
1

1 + EΔt
with EΔt =

˜ a P
V P

Δt (4.71)

4.5 Boundary conditions

4.5.1 Boundary placement

The boundary conditions that can be considered in the model are inflow, outflow, wall,
(water) surface, and symmetry boundaries. The spatial discretisation of the computational
domain is done in such a way that the boundaries coincide with the cell face (see Fig.
4.5). The cell neighboring the boundary has special characteristics that modify the
definition of cell set forth in Sect. 4.3.1; it has more than one node and less than six
neighbors. Three types of cell and node are introduced (see Fig. 4.5):

• Interior cell (the white cell) is a computational cell where the dependent variable, φ,
is unknown and is to be computed at the interior node (the solid circle); an interior
cell has only one node, the interior node.

• Boundary cell (the gray cell) is a boundary neighboring cell whose one or more of its
faces coincide with a boundary. A boundary cell has one interior node (the solid
circle) at the center of the cell and one boundary node (the gray circle) at the center of
each face that coincides with the boundary. The known boundary values of all
variables φ are to be defined at the boundary node, either given or extrapolated from
the interior nodes.

• Dummy cell (hatched cell) and dummy node (white node) are used to denote the
domain which is excluded from the computation, for example blocked-regions,
cylinders, and corners. These dummy cells and nodes are necessary in order to
maintain a continuous ordering of the cell and node indexes.

– 4.30 –

Except of some special cases for the k and ε equations, the effect of the boundaries to the
computation for the interior node of a boundary cell is additive. In the discretized
equation of u, v, w, and pc, the contribution of each boundary node is added to the source
term, b, of the interior node of the boundary cell, and the coefficient related to this
boundary node is eventually set to zero. The k and ε for the interior nodes of boundary
cells having wall or free-surface boundaries, however, are defined by a given expression.
In the following sections are presented the method of computation for the boundary cells.

wall

water surface

(b) xz-plane

inflow

symmetry

wall

(a) xy-plane

outflow

blocked-area

outflow

inflow

blocked-area

interior node
boundary node
dummy node

wall

wall wall

interior cell boundary cell dummy cell

Fig. 4.5 Boundary conditions implemented in the model.

4.5.2 Inflow boundary

Suppose that the inflow boundary lies at the west face, w, of the boundary cell P (see Fig.
4.6). The inflow boundary values across the face w are imposed as the boundary

– 4.31 –

condition, whose values are defined at the boundary node W located at the same place as
w (see Sect. 4.5.1):

φW = φ in (4.72)

The pressure is assumed to vary linearly between W, P and E:

pW − pP
LPW

=
pE − pP
LPE

⇒ pW = 1 + βe()pP −βe pE (4.73)

The above relation holds as well for p∗ and pc values.

The boundary node denoted by W (instead of w) upon which the inflow boundary values
are defined allows the discretized equations formerly established for interior nodes to be
applied to the boundary node W without the need to change the notation.

P

T

B

EW

t

w e

b

interiorexterior

inflow

φ φW in

w in

w
c

W
c

P
c Pe

PE
E
c

P
c

given

q q given

p p p
L
L

p p

= ()
= ()

= = − −()

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

Fig. 4.6 Inflow boundary.

Momentum and k-ε equations

In forming the coefficients in Eq. 4.52, the following steps apply:

• all variables at the inlet are given: φW = φ in

• evaluate the convective-diffusive terms as for normal interior cells:
aW
C , aW

D , aP
C()W, aP

D()W, b
D()W, b

1D()W, b
2D()W

• bring the contribution of node W to the source term: b← b − bD()W − aW
C + aW

D()φW

• set the coefficient at node W to zero: aW = 0

– 4.32 –

Pressure and velocity corrections

The contribution of the discharge across the west face, qw, to the continuity equation, Eq.
4.66, is replaced by the imposed discharge, qin. In forming the coefficients in Eq. 4.68,
the following steps apply:

• set the coefficient at node W to zero: aW
p = 0

• set the contribution of the inflowing discharge to the source term: bp()w = −qin

For the velocity correction, Eq. 4.57, the pressure correction gradient, ∂pc ∂xi , is
computed by the finite-volume technique, Eq. 4.20, which requires the value of
pc()w = pc()W . This latter is obtained by Eq. 4.73.

4.5.3 Outflow boundary

Suppose that the outflow lies at the east face of the boundary cell P (see Fig. 4.7). Across
the outflow face, the convective flux is computed according to the upwinding principle of
Eq. 4.28:

FC()e = qe

ℓ φP
ℓ+1 = qout

ℓ φP
ℓ+1

while the diffusion flux is set to zero:

FD()e = 0

leading to a simplified form of Eq. 4.43:

 Fe = qout
ℓ φP

ℓ+1

where qout
ℓ is either imposed or computed from the upwinding of P value at the former

iteration step:

 qout
ℓ =Vout

ℓ
⋅Se = VP

ℓ
⋅Se

The same upwinding process finds the other variables at the boundary node E.

φE = φe = φP

– 4.33 –

P

T

B

EW

t

w e

b

interior exterior

outflow

φ φE P

e
c

E
c

P
cp p p

=

= =
⎧
⎨
⎩

Fig. 4.7 Outflow boundary.

Momentum and k-ε equations

• set all coefficients related to node E in Eq. 4.52 to zero:
aE
C = aE

D = a P
C()E = aP

D()E = bD()E = b1D()E = b2D()E = 0

• extrapolate all variables at P to E: φE = φP

• the outflowing discharge results: qout
ℓ =Ve

ℓ
⋅Se = VP

ℓ
⋅Se

Pressure and velocity corrections

The contribution of the discharge across the east face, qe, to the continuity equation, Eq.
4.66, is replaced by the outflowing discharge, qout. In forming the coefficients in Eq. 4.68,
the following steps are done:

• set the coefficient at node E to zero: aE
p = 0

• set the contribution of the inflowing discharge to the source term: bp()e = −qout

For the velocity correction, Eq. 4.57, the pressure correction gradient, ∂pc ∂xi , is
computed by the finite-volume technique, Eq. 4.20, which requires the value of
pc()e = pc()E ; this latter is obtained by the upwinding: pc()E = pc()P .

4.5.4 Wall boundary

Wall function approach

The wall function approach (Launder and Spalding, 1974) is applied to the cell whose
face is a rigid wall. Major assumptions used in this approach merit to be put forward
before presenting the derivation of the wall function; they are: (1) the no-slip flow
condition prevails at the wall with the universal logarithmic velocity distribution normal

– 4.34 –

to the wall, (2) the production of the turbulent kinetic energy is merely due to the
(turbulent) shear stress, thus neglecting the effect of the normal stress, and (3) a local
energy balance exists, i.e. the dissipation of the turbulent kinetic energy is equal to the
production. Given in the following paragraphs are the derivations of the wall function in
which those assumptions are further highlighted.

P

T

B

E
W

t

w e

b
interior

exterior

VP

bS

 n,Pwall

Vn

Vt

nt
nn

V V

z z z

= =

= =

= =

= = ()

k k

p p p

p p p g

b B

B P B P

b
c

B
c

P
c

b B P P b

0,
, ,

,

(a)

b

P

wall

en

VP

Vn,P

et

Vt,P

bS

nt

nn

 n,P

(b)

et

en

t n
 = () +ln EV V

Fig. 4.8 Wall boundary.

(1) In wall boundaries, the center of the cells is located sufficiently close to the wall but
outside the viscous sub-layer (see Fig. 4.8a); the universal logarithmic velocity
distribution then prevails in the region Pb (see Fig. 4.8b):

Vt =

V∗

κ
ln E δn

+() or V∗ =
κ Vt

ln E δn
+() , with Vt = Vt and δn

+ =
V∗δn
ν

 (4.74)

in which V∗ is the shear velocity, Vt is the velocity component parallel to the wall, κ is
the Karman universal constant, δn is the normal distance from the wall, ν is the molecular
viscosity of water, and E is the wall roughness coefficient. The coefficient E in the
above relation accounts for all flow regimes, either hydraulically smooth, rough, or
transition. Note the directions of stresses on the wall face b; the shear stress,

!
τ nt , is to the

opposite direction of
! e t , whereas the normal stress,

!
τ nn , is according to

! e n . These
directions are consistent with the convention that shear forces are in the direction of
positive increases of velocity (positive velocity gradients). In the direction of

! e n of the

– 4.35 –

(local) wall coordinate, (
! e t,
! e n), the velocity gradient ∂Vt ∂n is negative, whereas

∂Vn ∂n is positive.

(2) The equation of the turbulent kinetic-energy production, Eq. 4.12, written in the wall
coordinate system, (

! e t,
! e n), shown in Fig. 4.8b, is:

G = ν t 2
∂Vt
∂t

$

%
&

2

+
∂Vn
∂t

+
∂Vt
∂n

$

%
&

2

+ 2 ∂Vn
∂n

$

%
&

2'

(
)
)

*

+
,
,

 (4.12a)

Since the velocity is zero everywhere along the wall, Vt = 0 (no-slip condition) and
Vn = 0 (no-flow across the wall), all velocity gradients along the wall (the tangential
components) disappear. The above expression thus reduces into:

G = ν t
∂Vt
∂n

$

%
&

2

+ νt 2
∂Vn
∂n

$

%
&

2

 (4.75a)

The first and the second terms depict the turbulent kinetic-energy production due to the
shear and normal stresses, respectively. In the wall function, the second term is neglected,
which implies that the normal velocity component cannot develop in the wall region. This
yields the following:

G = ν t
∂Vt
∂n

$

%
&

2

 (4.75b)

The validity of the above equation is strictly limited at the wall b, but is generally
extended to the cell center P where it constitutes an approximation. The omission of the
normal velocity gradient in Eq. 4.75a and the extension of Eq. 4.75b to the cell center are,
of course, a rather rude approximation, notably in the case of flow around a cylinder.
Measurement data in front of the cylinder (see Chapters 2 and 3) show that the radial
velocity (the normal component) and the downward velocity (the tangential component)
have the same order of magnitude. The normal velocity gradient, therefore, should be
accounted for in the turbulent kinetic-energy production. However, the present model
adopts Eq. 4.75b since it leads to a numerical simplification.

(3) The third assumption in the wall function is the existence of a local balance between the
turbulent kinetic-energy dissipation and its production, ε = G (see Launder and Spalding,
1974; Versteeg and Malalasekera, 1995, p. 73). This yields:

εP = GP = νt
∂Vt
∂n

$
%

&
'

2(

)
*
*

+

,
-
- P

 (4.76)

The eddy viscosity can be found from the Boussinesq concept, Eq. 4.5, and the definition
of the friction velocity, τnt , b = ρV∗2 . Considering that the variation of the shear stress is

– 4.36 –

negligible in the wall region, τnt , b = τnt, P , and that the velocity gradient along the wall is
negligible, ∂Vn ∂t()P ≈ 0 , one may write:

V∗2 =
τnt,b
ρ

=
τnt ,P
ρ

= νt
∂Vt
∂n

+
∂Vn
∂t

&
'

(
)

*

+
,

-

.
/
P

= νt
∂Vt
∂n

&
'

(
) P

 (4.77)

The velocity gradient is obtainable from the logarithmic velocity distribution, Eq. 4.74:

∂Vt
∂n

"

$
% P

=
V∗

κ δn, P
 (4.78)

Inserting this relation into Eq. 4.77, one obtains:

νt ,P = V∗ κ δn, P (4.79)

Substituting Eqs. 4.78 and 4.79 into the right-hand-side of Eq. 4.76 yields:

εP = GP =V∗ κ δn,P
V∗

κ δn, P

%

&
'

(

)
*

2

=
V∗3

κ δn ,P
 (4.80)

Combining Eqs. 4.79 and 4.80 to the definition of the eddy viscosity in the k-ε model,
Eq. 4.9, one gets:

νt ,P = cµ
kP2

εP

V∗ κ δn = cµ
kP2 κ δn
V∗3

&

' (
)

* +

V∗ = cµ1 4 kP1 2 (4.81)

There are now two expressions of the friction velocity, i.e. Eqs. 4.74 and 4.81. Both
relations are used to evaluate the shear stress at the wall:

!
τ nt, b = −ρ V∗V∗ = −ρcµ

1 4kP1 2
κV t ,P

ln E δn,P
+()
! e t (4.82)

The negative sign is required since
!
τ nt is acting to the opposite direction of

! e t (see Fig.
4.8). This relation is the one necessary to evaluate the contribution of the wall boundary
to the flow momentum equation; its implementation will be further presented later.

– 4.37 –

Wall function: the final equations

The link between the wall function and the k equation is achieved through the turbulent
kinetic-energy production, Eq. 4.76, the velocity gradient, Eq. 4.78, and the shear
velocity, Eq. 4.81. Combining these equations, one gets:

GP = ν t
∂Vt
∂n

$

%
&

2'

(
)
)

*

+
,
, P

=
τnt ,P
ρ

∂Vt
∂n

$

%
& P

=
τnt ,b
ρ

V∗
κ δn ,P

$
2

%

&
3 =

τnt ,b
ρ

cµ
1 4 kP1 2

κ δn, P
 (4.83)

with τnt , b =
!
τ nt,b .

This equation is used to define the energy production in the source term of the k equation
(see Table 4.2) for cells neighboring the wall.

For the ε equation, the energy dissipation is obtained from Eqs. 4.80 and 4.81:

εP =
cµ 3 4 kP3 2

κ δn, P
 (4.84)

Before detailing the implementation of the wall function to the discretized momentum
and k-ε transport equations, two variables need to be defined, namely the wall roughness
coefficient, E , and the parallel velocity components, Vt .

Wall roughness coefficient. The wall roughness coefficient, E, in the logarithmic
velocity profile is adjusted according to the equivalent (standard) roughness, ks, whether
it is hydraulically smooth, rough, or transition between smooth and rough. The following
relation is used to define the roughness coefficient (Wu et al., 2000):

 E = exp κ B − ΔB()[] (4.85)

where B is an additive constant and ΔB is a roughness function determined according to
the standard roughness, ks, as follows (Cebeci and Bradshaw, 1977):

ΔB =

0 for ks
+ < 2.25

B −8.5 +
1
κ
ln ks

+$
% &

'
()
sin 0.4258 ln ks

+ − 0.811()[] for 2.25 ≤ ks
+ < 90

B −8.5 +
1
κ
ln ks

+ for ks
+ ≥ 90

,

-

.

.

.

/

.

.

.

 (4.86)

with B = 5.2, κ = 0.4, and ks
+ = V∗ ks ν being the roughness Reynolds number.

Tangential velocity component. The velocity at the cell center P needs to be
decomposed into its normal and tangential components with respect to the wall (see Fig.

– 4.38 –

4.8b). The unit vector normal to the wall,
! e n , has an outward direction (see Eq. 4.17),

while the unit vector tangential to the wall,
! e t , has the direction of the projection of V P

on the wall. Both unit vectors are perpendicular in such a way that any vector (for
example V P) can be decomposed along them in the plane (

! e t,
! e n) which also contains

V P . For determining
! e t , it is necessary to find the projection Vt , P , which can be obtained

from:

Vt , P = VP − Vn,P = VP − V P ⋅

! e n()! e n (4.87)

Knowing Vt , P the unit vector
! e t can be easily computed:

! e t = Vt Vt()
P

 (4.88)

Implementation of the wall function

Wall function for the momentum equation. Since there is no discharge across the wall,
the convective flux does not exist across the wall face; the only flux is due to the
diffusion. In the discretized momentum equation, Eq. 4.52, the diffusion term is not
evaluated by Eq. 4.33, but by evaluating this term as a normal force (per unit mass)
acting on the wall. Similarly the wall shear-stress, Eq. 4.82, is also transformed as a shear
force. Both forces are considered as a source term and are evaluated at iteration ℓ , which
then linearized such that the velocities at the cell center P become unknown variables.

The force due to the normal stress acting on the wall (see Fig. 4.8) can be computed as:

Fn

ρ

"

$

%

&
'
b

ℓ

=
"
τ nn
ρ

"

$
%

& ' b

ℓ

Sb = −νt 2
∂Vn
∂n
" e n

"

%
& b

ℓ

Sb ≈ −ν t 2
∂Vn
∂n
" e n

"

%
& P

ℓ

Sb = −νt 2
Vn
δn

" e n
"

$

%

&
'
P

ℓ

Sb (4.89)

The negative sign is necessary since the normal stress,
!
τ nn , is in the negative direction of

Vn (see Fig. 4.8). All terms are evaluated explicitly, that is the velocity is from the ℓ th
iteration, the kinetic energy is from the mth iteration, and the geometry is from the nth
time iteration.

The force due to the shear stress acting on the wall is obtained from Eq. 4.82, but its form
is modified to allow easy computation of the turbulent viscosity later on.

F t

ρ

"

$

%

&
'
b

ℓ

=
"
τ nt
ρ

"

$
%

& ' b

ℓ

Sb = −
cµ
1 4 km()1 2 κ δn
ln E δn

+()
,

-

.

.

/

0

1
1
P

(1)
$ % % % & % % %

Vt
δn

" e t
"

$
%

& ' P

ℓ

Sb

(2)
$ % & %

– 4.39 –

The terms grouped in the first bracket on the right-hand side of the above expression have
together the dimension of a viscosity, thus can be considered as the wall turbulent-
viscosity, νt ,wall :

F t
ρ

"

$

%

&
'
b

ℓ

= − νt,wall
Vt

δn

"

$

%

&
'
P

ℓ

Sb, with νt ,wall =
cµ
1 4 km()1 2 κ δn
ln E δn

+()
,

-

.

.

/

0

1
1
P

 (4.90)

Both forces are added to the source term of the boundary cell P, as the contribution from
the wall boundary node B. The other coefficients related to the contribution from the
boundary node B are then assigned to zero. The following steps are used in evaluating the
coefficients in Eq. 4.52:

• set all coefficients related to the contribution of the boundary node B to zero:
aB
C = aB

D = 0, a P
C()B = aP

D()B = bD()B = 0, and b2D()B = 0

• compute
! e t using Eqs. 4.87 and 4.88

• compute the forces due to the normal and shear stresses as source terms and linearise
the source:

 x-momentum:

b + bP uP
ℓ+1()B =

Fn,x
ρ

+
Ft,x
ρ

"

$

%

&
'
b

ℓ

= − ν t uen,x + 2v en ,y + 2wen, z()en ,x + ν t ,wall ve t,y + wet , z()e t ,x[]P
ℓ Sb
δn,P

b()B
" # $ $ $ $ $ $ $ $ $ $ $ $ $ $ % $ $ $ $ $ $ $ $ $ $ $ $ $ $

− νt en,x en ,x() + ν t ,wall et ,x e t,x()[]P
ℓ Sb
δn ,P

bP()B
" # $ $ $ $ $ $ $ $ % $ $ $ $ $ $ $ $

uP
ℓ +1

 (4.91a)

 y-momentum:

b + bP uP
ℓ+1()B =

Fn,y
ρ

+
Ft ,y
ρ

"

$

%

&
'
b

ℓ

= − ν t 2 uen ,x + v en ,y + 2wen, z()en ,y + ν t,wall u et ,x +we t,z() et ,y[]P
ℓ Sb
δn ,P

b()B
" # $ $ $ $ $ $ $ $ $ $ $ $ $ $ % $ $ $ $ $ $ $ $ $ $ $ $ $ $

− νt en,y en,y() + νt ,wall e t ,y e t,y()[]P
ℓ Sb
δn ,P

bP()B
" # $ $ $ $ $ $ $ % $ $ $ $ $ $ $

vP
ℓ+1

 (4.91b)

– 4.40 –

 z-momentum:

b + bP uP
ℓ+1()B =

Fn, z
ρ

+
Ft,z
ρ

"

$

%

&
'
b

ℓ

= − ν t 2 uen ,x + 2 ven,y +wen, z()en ,z + νt ,wall ue t ,x + v et ,y()e t,z[]P
ℓ Sb
δn ,P

b()B
" # $ $ $ $ $ $ $ $ $ $ $ $ $ $ % $ $ $ $ $ $ $ $ $ $ $ $ $ $

− νt en,z en,z() + νt ,wall e t ,z e t , z()[]P
ℓ Sb
δn ,P

bP()B
" # $ $ $ $ $ $ $ % $ $ $ $ $ $ $

wP
ℓ+1

 (4.91c)

Wall function for the k equation. The wall function is used to evaluate the source term
of the k equation, G − ε . The turbulent kinetic-energy production, G, for cells
neighboring the wall is not evaluated by Eq. 4.12, but is directly obtained from Eq. 4.83.
Since the velocity has been known when solving the k equation, this information can be
used in calculating the wall shear-stress term in the G equation, Eq. 4.83. The turbulent
kinetic-energy dissipation, ε, is evaluated by Eq. 4.84; this contains a non-linear term in k
which is then linearized. The following steps apply:

• set all coefficients related to the contribution from the boundary node B to zero:
aB
C = aB

D = 0, a P
C()B = aP

D()B = bD()B = 0

• compute the source, that is the energy production and dissipation, and linearise the
source:

b + bP kP
m+1 = G P − εP() V P

=
τnt
ρ

%

&
'

(

)
*

b

m cµ
1 4 kP

m()1 2

κ δn,P
V P

b
! " # # # # $ # # # #

−
cµ

3 4 kP
m()1 2

κ δn, P
V P

bP

! " # # # $ # # #
kP

m+1 (4.92)

where the magnitude of the shear stress is evaluated with the velocity already
computed from the momentum equations (see Eq. 4.82):

τnt
ρ

$
%

&

'
(
b

m

=
1
ρ

!
τ nt,b =

cµ
1 4 km()1 2

ln E δn
+()

*

+

,
,

-

.

/
/
P

Vt ,P
m+ 1

=
ν t,wall
δn

$
%

&

'
(
P

m

VP
m+1

⋅
! e t

=
ν t,wall
δn

$ %
&

' (P

m

uPm+1 e t,x + vPm+1 et ,y +wP
m +1 e t ,z()

Note that kP
m+ 1 is unknown for this computation step, while uP

m+1 , vP
m+1 , and wP

m +1
are already fixed.

– 4.41 –

Wall function for the ε equation. The turbulent kinetic-energy dissipation for cells
neighboring the wall is defined by Eq. 4.84. This can be easily implemented as follows:

• set all coefficients related to the neighboring cells to zero:
aE = aW = a N = aS = aT = aB = 0

• set the coefficient at cell P to unity: aP = 1

• set the source terms by (see Eq. 4.84):

 b = εP
m+ 1 =

cµ 3 4 kP
m+ 1()3 2

κ δn, P
 (4.93)

 where kP
m+1 is already computed in the previous step

Wall function and pressure correction. Since the discharge across the wall is zero, the
coefficient of the boundary node B in Eq. 4.68 is set to zero: aB

p = 0 . The pressure
correction at the boundary node is obtained by direct extrapolation from the cell center P:
pB
c = pP

c .

4.5.5 Symmetry boundary

At the symmetry plane, for example at the east face (see Fig. 4.9), the convective
transport across the plane and the shear stress along the plane are zero. These properties
make the velocity at E be easily obtained from the projection of the velocity at P to the
plane. For the scalar variables, k and ε, an approximation is used by extrapolating the
values at P to the boundary E. The following expressions thus apply at symmetry
boundaries:

P

S

N

E
W

s

w
e

nVP

 n,P

symmetry

Vn

Vt

eS

 e

 E P E P

e
c

E
c

P
c

k k

p p p

= =

= =

,

V Vt=E P,

en

et
nn

nt = 0,

Fig. 4.9 Symmetry boundary.

– 4.42 –

F C()e
= 0 for all φ

τnt ,e = 0

$
%

& %
⇒ VE =Vt , P

φE = φP for φ = k and ε

The diffusive term in the momentum equations, which is due to the normal stress, is
evaluated with the same method as that for the wall function approach. This term is
considered as a force per unit mass acting on the plane.

Momentum equations

• set all coefficients related to the boundary node E in Eq. 4.52 to zero:
aE
C = aE

D = a P
C()E = aP

D()E = bD()E = b1D()E = b2D()E = 0
• compute

! e t using Eqs. 4.87 and 4.88; its components are e t, x,e t, y,e t ,z .

• compute the forces due to the normal stress as source terms:

 x-momentum:

b + bP uP
ℓ+ 1()E

=
Fn,x

ρ

"

$

%

&
'

e

ℓ

= − ν t uen,x + 2v en ,y + 2wen, z()en ,x[]P

ℓ Se

δn
b()E

" # $ $ $ $ $ $ $ $ % $ $ $ $ $ $ $ $
− ν t en,x en,x()[]P

ℓ Se

δn, P

bP()E

" # $ $ $ $ % $ $ $ $
 uP
ℓ+1 (4.94a)

 y-momentum:

b + bP uP
ℓ+ 1()E

=
Fn,y

ρ

"

$

%

&
'

e

ℓ

= − ν t 2 uen ,x + v en ,y + 2wen, z()en ,y[]P

ℓ Se

δn
b()E

" # $ $ $ $ $ $ $ $ % $ $ $ $ $ $ $ $
− νt en,y en,y()[]P

ℓ Se

δn, P

bP()E

" # $ $ $ $ % $ $ $ $
 vP
ℓ+1 (4.94b)

 z-momentum:

b + bP uP
ℓ+ 1()E

=
Fn, z

ρ

"

$

%

&
'

e

ℓ

= − ν t 2 uen ,x + 2 ven,y + wen, z()en ,z[]P

ℓ Se

δn
b()E

" # $ $ $ $ $ $ $ $ % $ $ $ $ $ $ $ $
− ν t en, z en, z()[]P

ℓ Se

δn,P

bP()E

" # $ $ $ $ % $ $ $ $
 wP
ℓ+1 (4.94c)

– 4.43 –

k and ε equations

• set all coefficients related to the boundary node E in Eq. 4.52 to zero:
aE
C = aE

D = a P
C()E = aP

D()E = bD()E = b1D()E = b2D()E = 0

• extrapolate k and ε at P to E: kE = kP and εE = εP

Pressure and velocity corrections

Since the discharge across the boundary is zero, the coefficients related to the
contribution from the boundary node E in the discretized pressure correction equation,
Eq. 4.68, are set to zero: aE

p = 0 and bp()e = 0 .

The pressure correction gradient, ∂pc ∂xi , needed for the velocity correction, Eq. 4.57, is
computed by the finite-volume technique, Eq. 4.20, which requires the value of
pc()e = pc()E . This latter is obtained by: pc()E = pc()P . The velocity at E has to be

corrected such that it is parallel to the symmetry plane, since the flux across the boundary
is zero. This is similar to assuming that the velocity at E is the same as the projection of
the velocity vector at P on a plane parallel to the symmetry boundary: VE =Vt , P .

4.5.6 Surface boundary

At the (water) surface (see Fig. 4.10) the velocity is parallel to the boundary, the
discharge across the (water) surface is zero, and thus there is no convective transport
across this boundary. The shear stress along the surface, in addition, is neglected. This
allows the specification of the velocity along the surface boundary the same as the
projection of the velocity at the cell center. The water surface does not create turbulence;
therefore, the kinetic energy along the surface boundary is set to zero. The energy
dissipation, ε, at cell center is obtained in a similar manner as that at the wall boundary; a
correction may be given to reduce the computed value as has been reported in some
previous works (Krishnappan and Lau, 1986).

For the pressure, a hydrostatic distribution is assumed between the surface and the cell
center. The pressure at the surface is supposed to be atmospheric; if it is not the case, the
surface is moved according to the pressure defect, relative to a reference pressure, which
is prescribed at a particular cell. This reference cell is normally defined at the top-most
cell of the outflow boundary. This is similar to prescribe a constant flow-depth condition
at the outflow. The surface correction is done at the end of each time step. An under-
relaxation factor and a limitation may be imposed to avoid excessive change of the
computational domain. The procedures to handle surface boundary are described in the
following paragraphs.

– 4.44 –

P

E

B

W

T

b

w

e

t

VP
 z

St

Vn

Vt

en

et
nn

V VT P

T T P

t
c

T
c

P
c

t T P T P

k

p p p

p p p g

=

= =

= =

= = + ()

t

z z z

,

,0

nt = 0,

 n,P

Fig. 4.10 Surface boundary.

Momentum equations

• set all coefficient related to the boundary node T in Eq. 4.52 to zero:
aT
C = aT

D = a P
C()T = aD()T = bD()T = b2D()T = 0

• compute
! e t using Eqs. 4.87 and 4.88

• compute the forces due to the normal stress as source terms:

 x-momentum:

b + bP uP
ℓ+ 1()T

=
Fn,x

ρ

"

$

%

&
'

t

ℓ

= − ν t uen,x + 2v en ,y + 2wen, z()en ,x[]P

ℓ St

δn
b()T

" # $ $ $ $ $ $ $ $ % $ $ $ $ $ $ $ $
− ν t en,x en,x()[]P

ℓ St

δn, P

bP()T

" # $ $ $ $ % $ $ $ $
 uP
ℓ+1 (4.95a)

 y-momentum:

b + bP uP
ℓ+ 1()T

=
Fn,y

ρ

"

$

%

&
'

t

ℓ

= − ν t 2 uen ,x + v en ,y + 2wen, z()en ,y[]P

ℓ St

δn
b()T

" # $ $ $ $ $ $ $ $ % $ $ $ $ $ $ $ $
− νt en,y en,y()[]P

ℓ St

δn, P

bP()T

" # $ $ $ $ % $ $ $ $
 vP
ℓ+1 (4.95b)

– 4.45 –

 z-momentum:

b + bP uP
ℓ+ 1()T

=
Fn, z

ρ

"

$

%

&
'

t

ℓ

= − ν t 2 uen ,x + 2 ven,y + wen, z()en ,z[]P

ℓ St

δn
b()T

" # $ $ $ $ $ $ $ $ % $ $ $ $ $ $ $ $
− ν t en, z en, z()[]P

ℓ St

δn,P

bP()T

" # $ $ $ $ % $ $ $ $
 wP
ℓ+1 (4.95c)

k equation

• set all coefficient related to the boundary node T in Eq. 4.52 to zero:
aT
C = aT

D = a P
C()T = aD()T = bD()T = b2D()T = 0

• set the surface kinetic energy at T to zero: kT = 0

ε equation

• set all coefficients related to all neighboring cells to zero:
aE = aW = a N = aS = aT = aB = 0

• set the coefficient at cell P to unity: aP = 1

• set the source terms by (see Eq. 4.84 and also Krishnappan and Lau, 1986):

εP
m+1 = cf

cµ3 4 kP
m+ 1()3 2

κ δn, P
 (4.96)

where cf is an empirical constant, which is set to 0.164

Pressure and velocity corrections

• set the coefficient at T in Eq. 4.68 to zero: aT
p = 0

• extrapolate the pressure correction at P to T: pT
c = pP

c

• correct the pressure and the velocity

• extrapolate the velocity at P to T and correct this velocity: VT =Vt , P

Surface correction

• extrapolate the pressure at P to T by assuming a hydrostatic distribution:
pT = pP + ρg z ΔzPT (see Fig. 4.11a), with g z the z-component of

! g (generally
negative)

• compute the surface correction based on the pressure-defect relative to the reference
pressure: Δh(p) = pT − pref() ρg z()

– 4.46 –

surface displacement, :

new surface

P

T
Te

Tw

E

W

B

h∆

h∆

∆zPT

∆ zh()

∆ ph()

old surface

(a)

(b)

∆ ∆ ∆
∆

h h
h
h

p

all cell p= ×
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

()
()

()min , min1
z

′P

′E

′W

P

B

T

∆z
′P

′T

′B

′∆z

∆ zh()
upper limit of the
surface displacement, :
∆ ∆h PT

() ,z z= ϖ1 ≤ ≤ϖ10 1 ∆ ph() :

h∆

surface displacement computed
by pressure defect,

ρh p p gp
T ref z∆ = −() ()()

=
′

=
′

=

=
′

=
′

=

′ ′ ′

′ ′ ′

u u v v w w

k k p p h

P P P P P P

P P P P P P

∆
∆

∆
∆

∆
∆

∆
∆

∆

z
z

z
z

z
z

z
z

, , ,

, ,ε ε ρgz+

Fig. 4.11 Surface correction: (a) displacement of the vertices of the surface boundary
cells, (b) modification of the variables at the new cell centers.

• compute the upper limit of the surface correction based on the cell thickness:

Δh z() = ϖ1ΔzPT , 0 ≤ ϖ1 ≤ 1

• compute the displacement of the boundary node T by:

Δh = Δh p() ×min 1, min
all cells

Δh z()

Δh p()

$
%

&

'
(

)

*
+
+

,

-
.
.

• since a cell is defined by its vertices, Dh at T needs to be distributed over the vertices,
Te, Tw, Tn, Ts (see Fig. 4.11a); linear interpolation is used

• move the cell vertices of the free-surface boundary cells according to the new
coordinates of Te, Tw, Tn, Ts

– 4.47 –

• reconstruct the mesh, maintain the number of cells in the vertical and their relative
positions to the local depth

• use linear interpolation to get variables at the new cell centers (see Fig. 4.11b) in
order to maintain the continuity:

u ! P = uP
Δz
Δ ! z

, v ! P = vP
Δz
Δ ! z

, w ! P = w P,

k ! P = kP
Δz
Δ ! z

, ε ! P = εP
Δz
Δ ! z

, p ! P = pP + ρ g z Δh

• continue the computation to the next time level

4.6 Solution procedures

4.6.1 Spatial discretisation

Applying the discretized governing equations, Eqs. 4.52 and 4.68 requires spatial
discretisation of the computational domain. The domain is divided into Ni–2, Nj–2, and
Nk–2 cells in the x-, y-, z-directions, respectively, from which there are Ni, Nj, and Nk
nodes (interior, boundary, and dummy nodes) in the corresponding directions. A typical
spatial discretisation is shown in Fig. 4.12. The cell and node are denoted by a single
index; the cells are indexed by ijk = 2,3,…,Nijkm, going along the y-direction (j =
2,3,…,Nj–1), the x-direction (i = 2,3,…,Ni–1), and the z-direction (k = 2,3,…,Nk–1),
while the nodes are indexed by ijk = 1,2,…,Nijk. With this indexing, the single-index ijk
for a cell and for its six-neighbors can be easily obtained from their position in the (x,y,z)
space (see Table 4.5).

Writing Eq. 4.52 or 4.68 for all cells, ijk = 2,3,…,Nijkm, produces a series of algebraic
linear equations which can be presented in a matrix form as follows:

A Φ = B (4.97)

The matrix A contains the coefficients of the equations, anb and aP, Φ is a column matrix
of the dependent variable, and B is a column matrix of the source terms. The matrix A
has diagonal blocks which are themselves tridiagonal, and sub- and super-diagonal blocks
in which each block has two diagonals, thus it has only 7 non-zero diagonals while the
other elements are zero. It is then not necessary to store all elements of the matrix A; only
those seven diagonals need to be stored. To facilitate the storage, each non-zero diagonal
is stored in a separate column matrix, i.e. Anb, nb = EWNSTB, and AP. Fig. 4.13 shows
the form of the matrix A.

– 4.48 –

i=1 2 3

k=1

2

3

Ni
Ni-2 Ni-1

Ni-3
j=2

3

Nj-1
Nj-2

Nj

ijk=1

ijk=Nij

ijk=Nijk

Nk-2

Nk-1

Nk

Nij = Ni.Nj
Nijm = (Ni-1)(Nj-1)
Nijk = Ni.Nj.Nk
Nijkm = (Ni-1)(Nj-1)(Nk-1)
ijk = 1,2,...,Nj,Nj+1,...,Nij,Nij+1...,Nijk
ijk = (k-1)Nij + (i-1)Nj + j

...
...

...
...

...
...

...
...

...
...

...

. . .

. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

.

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

...

...

...

...

Fig. 4.12 Typical spatial discretisation of the computational domain.

Table 4.5 Triple and single indexing of computational cells.

Direction Nodal index Cell index

x–direction i = 1, 2, ..., Ni i = 2, 3, ..., Ni–1
y–direction j = 1, 2, ..., Nj j = 2, 3, ..., Nj–1
z–direction k = 1, 2, ..., Nk k = 2, 3, ..., Nk–1

Cells in the xy–plane ij = 1, 2, ..., Nij
(Nij = Ni × Nj)

ij = 2, 3, ..., Nijm
[Nijm = (Ni–1) × (Nj–1)]

Cells in the domain ijk = 1, 2, ..., Nijk
(Nijk = Nij × Nk)

ijk = 2, 3, ..., Nijkm
[Nijkm = Nijm × (Nk–1)]

Cell Triple-index Single-index

P i,j,k ijk = (k–1) Nij + (i-1) Nj + j
E i+1,j,k ijk + Nj
W i–1,j,k ijk – Nij
N i,j+1,k ijk + 1
S i,j–1,k ijk – 1
T i,j,k+1 ijk + Nij
B i,j,k–1 ijk – Nij

– 4.49 –

ijk+Nij

ijk+Nj

ijk+Nij

ijk+Njijk=2 3
ijk=2

Nijkm

Nijkm

0

0

0

0

0

0

aB aW aS aP aN aE aT

A

bPPφ

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

=

BΦ

AB AW AS AP

AN

AE

AT

3

Fig. 4.13 The structure of the matrix coefficient A; all elements not shown are zero.

4.6.2 Matrix solvers

The solution of Eq. 4.97 is achieved by iteration techniques. Two matrix-solver routines
are available in this model, i.e. the SIPSOL, for the Strongly-Implicit Procedure method
(Stone, 1968), and the CGSTAB, for the Conjugate Gradient Stabilized method of Van
den Vorst (see Ferziger and Peric, 1997, pp. 105-106). For the first solver, the SIPSOL,
the solution procedure follows the one proposed by Jesshope (Jesshope, 1979) with some
modification to suit for the 7-point computational-cells of the three-dimensional cases.
The CGSTAB routine is taken from the reference (Ferziger and Peric, 1997, pp. 105-
106) without any major modification. Without going into detail, the iterative procedure of
the routines can be summarized as follows:

• given an initial solution, define a residue, that is the difference between the left- and
right-hand side of Eq. 4.97,

• calculate an increment based on the initial solution and residue,

• update the solution by adding the increment to the initial solution,

• repeat the procedure until convergence.

The iterative procedure to get the solution of Eq. 4.97 is commonly denoted as inner-
iteration. This is to be distinguished from the outer-iteration, that is the one necessary to
seek the solution satisfying the momentum and continuity equations (the ℓ -iteration) or
all the governing equations, the momentum, continuity, and k-ε equations (the m-

– 4.50 –

iteration). The inner-iteration seeks the solution for each dependent variable, φ, across the
computational domain for given coefficient and source terms, A and B, which are
constants. The solution for every dependent variable, φ (φ = u,v,w,p,k,ε), is sought one
after another. In the outer-iteration, solution is obtained for every dependent variable that
all together satisfies the governing equations. In each outer-iteration, the coefficient and
source terms are adjusted, where as in the inner-iteration, they are kept constant.

When performing the inner-iteration, it is important to decide when to quit the solver.
Since the solution of Eq. 4.97 for a particular variable, u for example, at a particular
iteration level, ℓ , does not necessarily satisfy all governing equations for u,v,w,p,k,ε, it is
inefficient to carry out a rigorous iteration at this stage. A restricted number of iterations
and a moderate convergence criterion will do. A single or at most a two inner-iteration is
generally sufficient to solve the momentum equation for u, v, and w since their equations
are of convection types. The pressure correction however requires a number of sweeps
over the entire domain to have a solution error within a sufficiently small allowable limit.
The convergence of the k and ε equations, being of convection-diffusion types, may also
be slow. This is due to the need of a small relaxation factor in the iteration process to
avoid oscillations. The residue of the solution of Eq. 4.97 is used as the basis to detect the
solution error; it is defined as:

ℜφ = b − a PφP − anbφnb∑
all cells
∑ (4.98)

The calculation in the inner-iteration is stopped when either one of the following criteria
is satisfied:

ℜφ
mi ≤ λ1 (4.99a)

ℜφ
mi ℜφ

mi=1 ≤ λ2 (4.99b)

mi > NITφ (4.99c)

in which ℜφ
mi is the sum of absolute residues over all cells after mith iterations for any

variable φ; λ1 and λ2 are prescribed convergence criteria; and NIT is the maximum
number of inner-iterations. Table 4.6 gives the default values of these criteria for each
variable φ.

Table 4.6 Criteria to stop the inner iteration

– 4.51 –

 φℓ λ1 λ2 NIT

u,v,w 10−6 [m4/s2] 10−3 2

p 10−5 [m3/s] 10−2 20

k 10−6 [m5/s3] 10−3 5

ε 10−6 [m5/s4] 10−3 5

The calculation sequence is presented in the calculation diagram depicted in Fig. 4.14,
and is summarized as follows:

a) Initialize all dependent variable: φ = φo (u,v,w,p,k,ε are given).

b) Define the geometrical properties, discretise the spatial domain.

c) Compute initial discharges, qcf, and eddy viscosity, νt.

d) Assign estimated pressures p∗ ,.

e) Construct coefficients of the discretized momentum equations.

f) Solve the momentum equations for u∗, v∗ , and w∗ , consecutively.

g) Construct coefficients of the discretized pressure correction equation.

h) Solve the pressure-correction equation for pc and subsequently update the pressure, p,
and velocities at the cell centers, u, v, and w.

i) Compute the new discharge across cell faces, qcf.

j) Return to step ‘d’ if the velocity components and pressure do not satisfy the
momentum and continuity equations.

k) Construct coefficients of the discretized k transport equation and solve for k; do the
same procedure to get ε.

l) Compute the eddy viscosity, νt, from the new k and ε

m) Update the water surface if the solution has converged, otherwise assign the new u, v,
w, p, k, and ε as the new ‘old’ values and return to step ‘d’.

n) Stop the iteration if the steady-state solution has been reached, otherwise proceed to
the next time step, return to step ‘d’.

– 4.52 –

Bo
un

da
ry

co

nd
iti

on
s

Co
ns

tru
ct

 th
e

co
ef

fic
ie

nt
s o

f
th

e
pr

es
su

re
-c

or
re

ct
io

n
eq

ua
tio

ns
SI

M
PL

E

c p

0
?

c p

3

4

Ye
s

N
o

C
O

N
TI

N
U

IT
Y

EQ
U

AT
IO

N

M
at

rix

so
lv

er

a
a

b
Pp

nbp
p

,
,

c
A

p
B

[
] [

]=
[

]

=
+

1
l

l

5

p
p

pp
c

=
+

+
l

1

=
=

+
u

v
w

p
,(

,
,

,
)

1

l
l

=
=

+
+

u
v

w
p

m
,(

,
,

,
)

1
1

l

=
+

+
m

1
1

l q
q

M
at

rix

so
lv

er

Co
nv

er
ge

nc
e?

U
pd

at
e

th
e

w
at

er
 su

rfa
ce

ST
O

P

Co
ns

tru
ct

 th
e

co
ef

fic
ie

nt
s o

f
th

e
k-

eq

ua
tio

ns

co
nv

ec
tiv

e
di

ffu
siv

e
so

ur
ce

5

h

0

?

2
1

Ye
s

N
o

Ye
s

N
o

k-

 E
Q

U
AT

IO
N

S

Bo
un

da
ry

co

nd
iti

on
s

A
B

[
][

]=
[

]

a
a

b
P

nb
,

,

+
+

km
m

,1
1

m
m

=
+

1
=

1
l

u
v

w
p

k
n

m
,(

,
,

,
,

,
)

=

+
+

1
1

u
v

w
p

k
n

n
,(

,
,

,
,

,
)

=

+1

=

u
v

w
p

m
=

=
+

,(
,

,
,

)

l
1

k
m

m
=

=
+

,(
,

)

1

=
+

m
1

l
q

q

In
te

rp
ol

at
e

to
 th

e
ne

w
 c

el
ls

u
v

w
p

n
,(

,
,

,
)

+1

=

k,
,

n
n

=
+

1
m

=
1

=
1

l
M

at
rix

so

lv
er

Bo
un

da
ry

co

nd
iti

on
s

ST
A

RT

Co
ns

tru
ct

 th
e

co
ef

fic
ie

nt
s o

f
th

e
m

om
en

tu
m

 e
qu

at
io

ns

co
nv

ec
tiv

e
di

ffu
siv

e
so

ur
ce

4

M
O

M
EN

TU
M

 E
Q

U
AT

IO
N

S

In
iti

al
 c

on
di

tio
ns

t=
0,

=
=

o
u

v
w

p
k

,(
,

,
,

,
,

)

=
=

n
o

u
v

w
p

k
,(

,
,

,
,

,
)

1

G
rid

 g
en

er
at

io
n

S
V

,
,

L

=
=

m
n

k
,(

,
)

l

=
=

n
u

v
w

p
,(

,
,

,
)

l
=

 p
p

l
l

=
◊

n
q

V
S Pa
,aa

b
nb

,

u
v

w
,

,

A
B

[
][

]=
[

]

3
ln

=
1

l
n

=
1,

 m
 =

 1
,

2
m

Eq
. 4

.6
4

Eq
. 4

.6
8

Eq
. 4

.5
7

Eq
. 4

.7
0

Eq
. 4

.5
5a

q
q

+
=

l
l

1

u
u

uRC
n

n
n

=
(

)+

u
u

u
u

u
v

w
c

i
i

i
i

+

=
+

=
(

)
,

,
,

l
1

u
V

a
p

c
P

c
i

ix
=

(

)∂
∂

(
)

1

t

m
m

c
k

=
+

+
1

1

t

m
m

c
k

=

q
=

◊

V

S

q
=

◊
+

+
1

1
l

l
V

S

Fi
g.

 4
.1

4
 C

om
pu

ta
tio

na
l p

ro
ce

du
re

s.

Fig. 4.14 Computational procedures.

– 4.53 –

4.7 Summary

Development of a three-dimensional numerical flow model has been presented. The
model is based on the approximate solution of the Reynolds averaged Navier-Stokes
equations, the continuity equations, and the k-ε turbulence closure model. These
equations are expressed in a general convective-diffusive transport equation on a
Cartesian coordinate system. The working equation of the model is obtained by
discretizing this transport equation by using finite volume techniques on a structured,
collocated, boundary-fitted, hexahedral control-volume grid. The hybrid (Spalding, 1972)
or power-law (Patankar, 1980) upwind-central difference scheme, combined with the
deferred correction method (Ferziger and Peric, 1997), is employed in the discretisation
of the governing equations. The solution of the working equation is achieved by an
iterative method according to SIMPLE algorithm (Patankar and Spalding, 1972). Along
solid boundaries, use is made of the wall function method, while along surface
boundaries the pressure defect is used to define the surface position. On other boundaries,
namely inlet, outlet, and symmetry boundaries, classical methods are used, such as zero
gradients, zero stresses, or known functions.

The model is applicable for steady state flow cases, but not for transient ones. The time
step is used as an iteration step to mark, notably, the change of the computational domain
due to the moving surface boundary.

References

Cebeci, T., and Bradshaw, P. (1977). Momentum Transfer in Boundary Layers.,
Hemisphere Publ. Co., Washington, USA.

Ferziger, J. H., and Peric, M. (1997). Computational Methods for Fluid Dynamics.,
Springer-Verlag, Berlin, Germany.

Fletcher, C. A. J. (1997). Computational Techniques for Fluid Dynamics, Vol. 1.,
Springer, Berlin, Germany.

Hirsch, C. (1988). Numerical Computation of Internal and External Flows, Vol. 1:
Fundamentals of Numerical Discretization., John Wiley & Sons, Chichester,
England.

Jesshope, C. R. (1979). “SIPSOL – A suite of subprograms for the solution of the linear
equations arising from elliptical partial differential equations.” Computer Physics
Communications, 17383-391.

Kobayashi, M. H., and Pereira, J. C. F. (1991). “Numerical comparison of momentum
interpolation methods and pressure-velocity algorithms using non-staggered grids.”
Communications in Applied Numerical Methods, 7173-186.

Krishnappan, B. G., and Lau, Y. L. (1986). “Turbulence modeling of flood plain flows.”
ASCE, J. Hydr. Engrg., 112(4), 251-266.

– 4.54 –

Launder, B. E., and Spalding, D. B. (1974). “The numerical computation of turbulent
flows.” Computer Methods in Applied Mechanics and Engineering, 3269-289.

Obi, S., Peric, M., and Scheuerer, G. (1989). “A finite-volume calculation procedure for
turbulent flows with second-order closure and collocated variable arrangement.”
Seventh Symposium on Turbulent Shear Flows, Stanford University, California, 2,
17.4.1-17.4.6.

Olsen, N. R. B., and Kjellesvig, H. M. (1998). “Three-dimensional numerical flow
modeling for estimation of spillway capacity.” IAHR, J. of Hydr. Res., 36(5), 775-
784.

Patankar, S. V. (1980). Numerical Heat Transfer and Fluid Flow., Hemisphere
Publishing Corp., New York, USA.

Patankar, S. V., and Spalding, D. B. (1972). “A calculation procedure for heat, mass and
momentum transfer in three-dimensional parabolic flows.” Int. J. Heat Mass
Transfer, 151787-1806.

Rhie, C. M., and Chow, W. L. (1983). “Numerical study of the turbulent flow past an
airfoil with trailing edge separation.” AIAA Journal, 21(11), 1525-1532.

Rodi, W. (1984). Turbulence models and their application in hydraulics: A state of the
art review., IAHR Monograph, Delft, NL.

Spalding, D. B. (1972). “A novel finite difference formulation for differential expressions
involving both first and second derivatives.” Int. Journal for Numerical Methods in
Engineering, 4551-559.

Stone, H. L. (1968). “Iterative solution of implicit approximation of multidimensional
partial differential equations.” SIAM J. on Numerical Analysis, 5530-558.

Versteeg, H. K., and Malalasekera, W. (1995). An Introduction to Computational Fluid
Dynamics: The Finite Volume Method., Longman Group, Essex, England.

Wu, W., Rodi, W., and Wenka, T. (2000). “3D Numerical modeling of flow and sediment
transport in open channels.” ASCE, J. Hydr. Engrg., 126(1), 4-15.

Notations

Capital letters

A [m3/s] coefficient matrix of the momentum and k-ε equations.
A p [m3/s/Pa] coefficient matrix of the pressure-correction equation.
B vector matrix of the source terms:
 [m4/s2] for the momentum equation,
 [m5/s3] for the k-equation,
 [m5/s4] for the ε-equation.
Bp [m3/s] vector matrix of the source terms for the pressure-correction

equation.

– 4.55 –

B, ΔB [–] constant and wall roughness function.
E [–] wall roughness coefficient.
E Δt [–] time step factor.
F, FC, FD total, convective, and diffusive transports:
 [m4/s2] of the momentum flux,
 [m5/s3] of the turbulent kinetic-energy flux,
 [m5/s4] of the dissipation of kinetic-energy flux.
G [m2/s3] turbulence kinetic-energy production.
L [m] length vector.
NIT [–] number of inner iterations.
P [–] cell center.
Pe [–] grid Peclet number, the ratio between the convective and diffusive

conductance.
Q [m3/s] discharge across sectional area of channels.
R source terms:
 [m/s2] of the momentum equation,
 [m2/s3] of the k-equation,
 [m2/s4] of the ε-equation.
Re [–] Reynolds number.
S [m2] cell-face surface vector.
V [m/s] velocity vector.
Vn [m/s] normal velocity vector.
Vt [m/s] parallel (tangential) velocity vector.
V∗ [m/s] friction velocity vector.
V [m3] cell volume.
Lower case letters
aP ,anb [m3/s] matrix coefficients of the momentum and k-ε equations.
aP
C,a nb

C [m3/s] matrix coefficients of the momentum and k-ε equations due to the
convective transport.

aP
D,anb

D [m3/s] matrix coefficients of the momentum and k-ε equations due to the
diffusive transport.

aP
p ,anb

p [m3/s/Pa] matrix coefficients of the pressure-correction equations.
˜ a P [m3/s] under-relaxed matrix coefficient.
b, ˜ b source term and under-relaxed source term:
 [m4/s2] of the momentum equation,
 [m5/s3] of the k-equation,
 [m5/s4] of the ε-equation.
bD [m4/s2] source term due to the diffusive-correction.
bP [m3/s] source term coefficient due to the source linearisation.
bp [m3/s] source term coefficient of the pressure-correction equation.
c1, c2, cµ [–] constants of the k-ε equation.

! e [m] directional unit vector.
fD [–] coefficient of the hybrid and power-law convective-diffusive

schemes, a function of the grid Peclet number.

– 4.56 –

gx,gy,gz [m/s2] Cartesian components of the gravitational acceleration.
k [m2/s2] turbulent kinetic energy.
ks [m] wall roughness height.
ks
+ [–] Reynolds number based on the friction velocity and wall

roughness.
n [m] normal direction.
p, p∗ , pc [Pa] pressure, estimated pressure, and pressure correction.
q [m3/s] discharge.
q∗ [m3/s] estimated discharge obtained from (u∗, v∗,w∗) .
qc,qRC,qno [m3/s] discharge corrections due to the velocity-correction, cell-face

interpolation, and non-orthogonal terms.
t, Δt [s] pseudo-time and pseudo-time step.
u,v,w [m/s] Cartesian velocity components.
u∗, v∗,w∗ [m/s] Cartesian velocity components obtained with estimated pressures.
! u , ! v , ! w [m/s] fluctuating parts of Cartesian velocity components.
u∗, v∗,w∗ [m/s] Cartesian friction-velocity components.
un
∗ [m/s] velocity obtained with estimated pressure.
un
c [m/s] pressure corrections.
un
impl ,un

RC, [m/s] pressure correction components: implicit, Rhie-and-Chow,
un
no non-orthogonal.

x, y, z [m] Cartesian coordinate components.
Greek characters
Γ [m2/s] diffusion coefficient.
β [–] linear interpolation factor.
Δh [m] surface displacement.
Δh(p) [m] surface displacement due to the pressure.
Δh(z) [m] surface displacement limitation according to the cell size.
δn [m] normal distance.
δn
+ [–] dimensionless normal-distance.

ε [m2/s3] dissipation of the turbulent kinetic energy.
φ flow variable, the dimensional unit depends on the variable of

which it represents.
Φ matrix of the flow variables.
κ [–] Karman constant.
λ1 convergence criterion: allowable maximum residue of the solution:
 [m4/s2] of the momentum equation,
 [m4/s2] of the k-equation,
 [m4/s2] of the ε-equation,
 [m3/s] of the pressure-correction equation.
λ2 [–] convergence criterion: allowable relative maximum-residue of the

solution.
ν, νt [m2/s] kinematic viscosity and turbulent eddy viscosity.
νt ,wall [m2/s] wall eddy-viscosity.
ρ [kg/m3] density of water.
ϖ, ϖ1, ϖ

p [–] under-relaxation factors.

– 4.57 –

σk, σε [–] constants of the k-ε model.
τ [N/m2] Reynolds stress.
ξ, η, ζ [m] local coordinate directions.
Other characters
ℜφ total residue:
 [m4/s2] of the momentum equation,
 [m4/s2] of the k-equation,
 [m4/s2] of the ε-equation,
 [m3/s] of the pressure-correction equation.
∇, ∇ [1/s] divergent and gradient nabla operators.
Superscripts
c corrected value.
 ℓ, ℓ +1 iteration level indices.
m, m+1 iteration level indices.
n, n+1 time level indices.
* estimated value.
Subscripts
P cell center.
i, j, k Cartesian component indices.
cf = e,w,n,s,t,b cell faces: the east, west, north, south, top, and bottom.
 ℓ dependent variable index.
n, t normal and tangential direction component indices.
nb = E,W,N,S,T,B neighboring cells: the East, West, North, South, Top, and Bottom.

– 4.58 –

