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Numerical Methods

Numerical Methods

Roots of
Equations
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Roots of equations

B Reference

= * Chapra, S.C., Canale, R.P., 2015, Numerical
Methods for Engineers, 7th Ed., McGraw-Hill
Book Co., New York

Ll * Part Two: Chapters 5to 8 (pp 117 to 229)

Numerical Methods
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Roots of equations

% y=f(x)=ax?*+bx+c=0 a quadratic formula

2

=] _ / 2 _

< x = bt Vb 4ac solution of the quadratic formula
2a

= The values obtained from the solution of the quadratic formula are called the
“roots” of the formula

= The roots represents the values of x that make the f(x) equal to zero
= Definition

= the root of an equation is the value of x that makes f(x) = 0
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= roots are sometimes called the zeros of the equation
= The root of a quadratic formula is easy to solved, but

= there are many equations for which the root cannot be easily determined




How to solve for roots of equations

Numerical Methods

direct method analytical solution

numerical

approximation ) :
approximation
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Numerical Methods
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Methods to solve for roots of equations

Bracketing methods Open methods

e Graphical methods e Simple fixed-point iteration
e The bisection method e The Newton-Raphson method
e The false-position method e The secant method

e Multiple roots




Graphical methods

Fall velocity of a parachutist

gravitational acceleration

Numerical Methods

mass of the parachutist

I

=@ _ p—(c/m)t
% . (1 e )

fall velocity l
drag coefficient
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Problem statement
Find c whenv =40 m/s,m =68.1kg,t =10s, :
g = 9.8 m/s? = . ai generated image 2026




Graphical methods

>
.TQ — gm (1 — e—(C/m)t) — 40 = 9.8(68.1) (1 — e—(C/68-1)10)
£ c C
Z

40 JuN 98(681) (1 . e—(c/68.1)10) —40 =0
e C
é 30 \ Y J
é —
> - fle)=0
S F©)=0
i = l _
- 10
g 34.1148
g 0 A ver 8 17.6534
- _\ 12 6.0669

-10

0 4 8 12 16 20 16 -2.2688

¢ 20 -8.4006




Numerical Methods
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Graphical methods

v = gm (1 _ e—(C/m)t) — 40 = 9.8(68.1) (1 —_ e—(C/68-1)10)
C C
40 JuN 98(681) (1 . e—(c/68.1)10) —40 =0
C
20 \ Y )
N flc)=0
) fle)=0
" 10 9.8(68.1)
14.75) = 1 — e~ (1475/68.1)10) _ 40 = 0.059
0 f1475) = ———(1-e )
c=¥\5\
0 b= 9.8(68-1) (1 _ e—(14.75/68.1)10) — 40.059 m/s

0 4 8 12 16 20 14.75
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Graphical methods
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FIGURE 5.2
llustration of a number of
general ways that a root may f)

occur in an interval prescribed
by a lower bound x; and an
upper bound x,. Parts (a) and
(c) indicate that if both f(x) and
fix,) have the same sign, either
there will be no roots or there £
will be an even number of roots
within the interval. Paris (b) and
(d) indicate that if the function
has different signs at the end
points, there will be an odd
number of roots in the interval.
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Graphical methods I

Numerical Methods

FIGURE 5.3

llustration of some exceptions fo the generu| cases depic’red in
Fig. 5.2. |a] Multiple roof that occurs when the function is tangen-

fial to the x axis. For this case, although the end points are of op- |
posite signs, there are an even number of axis intersections for r ‘ | X
the interval. (b] Discontinuous function where end points of oppo- ' '

site sign bracket an even number of roots. Special strategies are
required for determining the roots for these cases.
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Numerical Methods
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Graphical methods

Problem Statement. Computer graphics can expedite and improve your efforts to locate

roots of equations. The function
f(x) = sinl0x + cos3x

has several roots over the range x = 0 to x = 5. Use
into the behavior of this function.

computer graphics|to gain nsight

use an application
write a computer program




Numerical Methods
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Graphical methods

FIGURE 5.4

The progressive enlargement of fx] = sin 10x + cos 3x by the computer. Such interacfive graphics
permits the analyst to determine that two distinct roots exist between x = 4.2 and x = 4.3.

\ ol
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.15

(b)

4.25 4.3



The bisection method

m  Steps

1. Choose lower x; and upper x,, guesses for the root suct that the function
changes sign over the interval

Numerical Methods

2. Anestimate of the root x,. is determined by
X+ Xy
Xy = ———
r 2

3. Make the following evaluations to determine in which subinterval the root lies

a) if f(x)f(x,) <0, therootliesin the lower subinterval; therefore, set x,, = x,- and
return to step 2
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b) if f(x;)f(x,) > 0, the root lies in the upper subinterval; therefore, set x; = x,. and
return to step 2
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if f(x;)f(x,) = 0, the root equals x,; terminate the computation




The bisection method
fle) =0

9.8(68.1)
=
C

(1 _ e—(C/68.1)10) —40=0

Numerical Methods

2
9]
o
£
a0
=}

y—

Y—
@©
+—
2
O
+—
_
®©
=
&
-~
3
(2]}
o
-
—
e

A graphical depiction of the
bisection method. This plot
conforms to the first three
iterations from Example 5.3.
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new old

N The bisection method leal = | | 100%

S 6.0669

£

z 1 16 -2.2688 14

- 2 14 1.5687 15 1 6.7%

é 3 15 -0.4248 14.5 1 6.9%

g 4 14.5 0.5523 14.75 -0.5 3.4%

é 5 14.75 0.0590 14.875 0.25 1.7%

% 6 14.875 -0.1841 14.8125 0.125 0.8%

i'ﬁl 7 14.8125 -0.0629 14.7813 -0.0625 0.4%

oy 8 14.7813 -0.0020 14.7656 -0.0313 0.2%
9 14.7656 0.0284 14.7734 -0.0156 0.1%



Numerical Methods
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The bisection method

drag coefficient, c

16.5

16

15.5

15

14.5

14

13.5

13

12.5

12

2

3 4 5 6
iteration number

7

relative error

8%

7%

6%

5%

4%

3%

2%

1%

0%

2

3 4 5 6
iteration number
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Numerical Methods
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The false-position method

Pitfalls of the bisection method

in dividing the interval from x;
to x,, into equal halves, no
account is taken of the
magnitudes of f(x;) and f(xy)

if f(x;) is much closer to zero
than f(x,), itis likely that the
root is closer to x; thanto ¢,

f(x)
f ()
. (xl + xu)
T2
X1
Xu
f(x;)




Numerical Methods
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The false-position method

Apply a straight line joining
f(x) and f(xy)

apply a straight line joining
f(x;) and f(x,,)
the intersection of this line with

the x axis represents an
improved estimate of the root

thus, x, is

O _ fO)

Xr — X1 Xr — Xy

)
=T ) — f

f(x)

f(xy)

f(xp)




Numerical Methods
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The false-position method

xr_

x'r_

f(x;)

T ) — f )

f ()

T o) — f ()

(xu _ xl)

(xu _ xl)

f(x)
f O
0]— f(x;) (x, — %)
fOq) —fl) %

f(xp)

f(xu) -0

fxy) = fx)

(xu - xl)



new __ .old
N The false- posmon method €l = |=—ew —|100%
$ 6.0669
§ 1 16 -2.2688 14.9113
2 14.9113 -0.2543 14.7942 -0.1171 0.8%
3 14.7942 -0.0273 14.7817 -0.0125 0.1%
4 14.7817 -0.0029 14.7823 0.0006 0.0%
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The bisection vs the false-position method

8% _ : 0.9%
the bisection the false-position

7% method 0.8% method

Numerical Methods

0
6% 0.7%

0.6%
5%
0.5%
4%
0.4%

relative error
relative error

3%
0.3%

0
2% 0.2%

1% 0.1%
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iteration number iteration number
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Numerical Methods
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Pitfalls of the false-position method

There are certain cases where 4
bisection yields superior 12
results. 10
Example

8
® Use bisection and false-

. X 6
position methods to locate the =
root of 4
fO)=x1"-1 ?

betweenx = 0 and 1.3

0.2

0.4

0.6

0.8

1.2

1.4



Simple fixed-point iteration

" The method is known also as one-point iteration or successive
substitution

Numerical Methods

® Steps
1) rearrange the function f(x) = 0 so that x is on the left-hand side of the
equation

x = g(x)

2) the transformation can be accomplished either by algebraic manipulation
or by simply adding x to both sides of the original equation

x%+3
2
sinx =0 S x=sinx +x
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Simple fixed-point iteration

m Steps

3) given an initial guess at the root x;, compute a new estimate x;,, by an
iterative formula

Numerical Methods

xiy1 = g(x;)

" The approximate error for this equation can be detemined using the
error estimator

Xi+1 — Xi 100%

€q =

Xi+1

S
o
&
S
o0
35

[Py

“—
©
+—
<
(@]
=
o
@©
‘=
2
<
o3
(/2]
o
e
=
=

N
N




Simple fixed-point iteration

g "  Problem statemen
= * Use simple fixed-point iteration to locate the rootof f(x) = e™ — x
£
2 " Solution
fa)=eF—x D x,,=e
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Simple fixed-point iteration
_—

%)
o)
o
<
=
5]
b
©
3]
=
5]
=
S
Z

0 100
1 1 0.3679 171.8
2 0.3679 0.6922 46.9
2 3 0.6922 0.5005 38.3
& 4 0.5005 0.6062 17.4
g 5 0.6062 0.5454 11.2
2 6 0.5454 0.5796 5.9
E 7 0.5796 0.5601 3.5
3 8 0.5601 0.5711 1.9
£ 9 0.5711 0.5649 1.1
10 0.5649 0.5684 0.6
26 11 0.5684 0.5664 0.4




Numerical Methods
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Simple fixed-point iteration

1.2

0.8

x 0.6

0.4

0.2

3

4 5 6 7
iteration number

8

9

10 11

200

180

160

-
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relative error (%)
S
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iteration number
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Numerical Methods
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The Newton-Raphson method

®  Steps
1) find the first derivative f'(x)
2) start with an initial guess x;
3) find the slope at point x;, that
is f'(x;)
4) compute the next estimate of
the root x;,1 by

oo = e — f(x)
1+1 l f,(xi)

5) iterate until convergence

f(x)

f(x)

slope = f'(x;)

o—> X

/ Xi+1 X;
flx)—0 o f(x)
Xi = Xit1 i1 = f(x;)



Numerical Methods
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The Newton-Raphson method

® Problem statement

* Use the Newton-Raphson method to estimate the root of f(x) = e™*

employing an initial guess of x, = 0

_x’

®  Solution
* The first derivative of the function can be evaluated as

) = —e* 1

* Substitute the first derivative along with the original function into the
equation of the root estimate
fCx;) e —x

1+1 l _e_x_l

Xi+1 i _f’(xi)




The Newton-Raphson method

§ e ™ —x
T’g xi+1_xl__e—x_1
Z
Xi+1 — X

€, = |————{100%
- Xi+1
5 0 0 1 -2 0.5
g 1 0.5 0.1065 -1.6065 0.5663 11.7093
3 2 0.5663 0.0013 -1.5676 0.5671 0.1467
- 3 0.5671 0.0000 -1.5671 0.5671 2.2E-05

w
o




The Newton-Raphson method

[2])
©
o
d=
o) 0.7 14
>
©
9
s 0.6 12
=
=}
z
0.5 10
X
° 0.4 S 8
2 =
. x o
£ o)
3 0.3 Z 6
f= °
Z ®
S 0.2 4
ki
17
S 0.1 2
(/2]
5
= 0 0
0 1 2 3 0 1 2
31 iteration number iteration number




The Newton-Raphson method

" Pitfalls of the Newton-Raphson method
* the first derivative of the function may be difficult to evaluate

Numerical Methods

* the first derivative of the function may not exist
* the iteration may exhibit slow convergence (large number of iterations)

!

determine the positive root of f(x) = x'° — 1 using the
Newton-Raphson method and an initial guess of x = 0.5
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S

The Newton-Raphson method

n
O
o
<
+—
(&}
>
S Aside from slow convergence due to the nature of the function, other difficulties
5 can arise, as illustrated in Fig. 6.6. For example, Fig. 6.6a depicts the case where f
§ an inflection point [that is, f"(x) = 0] occurs in the vicinity of a root. Notice that
< iterations beginning at x, progressively diverge from the root. Figure 6.65 illustrates SR~
the tendency of the Newton-Raphson technique to oscillate around a local maximum / L %
- or minimum. Such oscillations may persist, or as in Fig. 6.6b, a near-zero slope is )
P reached, whereupon the solution is sent far from the area of interest. Figure 6.6¢ 1)
(0] .- s.e . . . |
£ shows how an initial guess that is close to one root can jump to a location several /\ /\
%0 roots away. This tendency to move away from the area of interest is because near- - = > \*
‘g zero slopes are encountered. Obviously, a zero slope [f'(x) = 0] is truly a disaster N
17 because it causes division by zero in the Newton-Raphson formula [Eq. (6.6)].
- . o . . g - (-)
e Graphically (see Fig 6.6d), it means that the solution shoots off horizontally and :
© 3 ; oy
= never hits the x axis. i
£
=
o
=
&
X0 X X
(d)

33

FIGURE 6.6

Four cases where the Newton-Raphson method exhibits poor convergence




The secant method

F)

®  Steps
1) start with two initial estimates of x f(xl) """"""""""
2) the derivative is approximated by a slope = f'(x;)
backward finite divided difference

f@io) = fOx)

Xi—1 — Xj

Numerical Methods

f,(x) = f(xi—l) ———————————————

3) compute the next estimate of the
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root X4
f(xi) Xi-1 X
X = X; — ———
i+1 l f,(xi)
34 4) iterate until convergence requires two initial estimates of x




The secant method

® Problem statement

X

* use the secant method to estimate the rootof f(x) = e™ — x

Numerical Methods

* startwithinitialestimatesof x_; = 0andxy =1

®  Solution
* The first derivative of the function can be evaluated as

)G /) (e -0) - (-
LOST x  —xy 0-1

f'(x

* Substitute the first derivative along with the original function into the
equation of the root estimate

X1 =X —M S X=X —6_1_1
1 0 f’(x_l’o) 1~ 0
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The secant method

I T Y ES I O N T YO
0 1

%)
o)
o
<
=
5]
b
©
3]
=
5]
=
S
Z

-1

0 1 -0.6321 -1.6321 0.6127
- 1 0.6127 -0.0708 -1.4493 0.5638 8.6659
§ 2 0.5638 0.0052 -1.5553 0.5672 0.5875
g 3 0.5672 0.0000 -1.5681 0.5671 0.0048
*g 4 0.5671 0.0000 -1.5671 0.5671 0.0000

w
o




iteration number

o O oo N O 1 I ™M N ~ O

(9%) 10118 BAIE)B

’
iteration number

0.8
x 0.6
0.4
0.2

The secant method

SpPOY18| 1BOLIBWINN pIroewgn-jjeis-ouensi//isdny W



¥ Multiple roots -
g " A multiple root corresponds to a point where a functio R
S tangent to the x axis. -

£

> * example: adouble root results from

=

4 —  Triple
root
0
1 3

f)=-3)x—-Dkx-1) n
@f(X)=x3—5x2+7x—3 ®)

* example: atriple root results from [ /f p!
fe) = (x=3)(x—Dx—-1x-1) NV

& f(x) =x*—6x3+12x% —10x + 3

()
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Examples of multiple roofs that
are tangential to the x axis.
Notice that the function does
not cross the axis on either side
of even multiple roofs (a) and
(c), whereas it crosses the axis
for odd cases (b).

w
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Multiple roots

§ = Modified Newton-Raphson method
; f(xi)
E (x)=0 e @y . =x —

/ T )

f(x) it can be shown that this function, u(x), has roots at
—

% u(x) = F(x) all the same locations as the original function, f(x)
- T~

g differentiation

:é . v u(x;) —\u,(x) _ f’(X)f'(x) — fx)f"(x)

S LT (xy) a Lf'(x)]?

w
©

X; = X;: — f(xl)f,(xl)
; T I e)]? = o) ()




Numerical Methods
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Multiple roots

® Problem statement

* Use both the standard and modified Newton-Raphson methods to
evaluate the multiple root of

fO)=x-3)x-Dkx-1)

* with aninitialguess ofx, =0
" Solution the NR method —
3 2
f(X)=X3—5X2+7X—3 X —SXi +7Xl'—3

Xi+1 = Xi — 2
F'(x) = 3x% — 10x + 7 37— 10x 47
the modified NR method —
f"(x) =6x—10

. (Xis — le'z + 7Xl' — 3)(33(512 — 10Xl + 7)
(3x;2 — 10x; + 7)% — (x;3 — 5x;° + 7x; — 3)(6x — 10)

Xi+1 = X



MUltlple rOOtS The Newton-Raphson method

—_

n
o
o
=
=
()
b
©
O
=
()
=
=]
Z

0 0.428571

1 0.4286 -0.8397 3.2653 0.6857 37.50

2 0.6857 .0.2286 1.5535 0.8329 17.67
3 3 0.8329 -0.0605 0.7523 0.9133 8.81
§a 4 0.9133 .0.0157 0.3692 0.9558 4.44
5 5 0.9558 10.0040 0.1827 0.9777 2.24
g 6 0.9777 -0.0010 0.0909 0.9888 1.12
S 7 0.9888 -0.0003 0.0453 0.9944 0.56
g 8 0.9944 -0.0001 0.0226 0.9972 0.28

9 0.9972 0.0000 0.0113 0.9986 0.14
41 10 0.9986 0.0000 0.0057 0.9993 0.07




MUltlple rOOtS The modified Newton-Raphson method

—-

Numerical Methods
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1 1.1053 -0.0210 -0.3878 -3.36842 1.003082 10.1868
2 1.0031 0.0000 -0.0123 -3.98151 1.000002 0.3079
3 1.0000 0.0000 0.0000 -3.99999 1 0.0002
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