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▪ Reference
• Chapra, S.C., Canale, R.P., 2015, Numerical 

Methods for Engineers, 7th Ed., McGraw-Hill 
Book Co., New York
• Part Two: Chapters 5 to 8 (pp 117 to 229)
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𝑦 = 𝑓 𝑥 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

𝑥 =
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎

a quadratic formula

solution of the quadratic formula

▪ The values obtained from the solution of the quadratic formula are called the 
“roots” of the formula

▪ The roots represents the values of 𝑥 that make the 𝑓 𝑥  equal to zero
▪ Definition

▪ the root of an equation is the value of 𝑥 that makes 𝑓 𝑥 = 0

▪ roots are sometimes called the zeros of the equation

▪ The root of a quadratic formula is easy to solved, but
▪ there are many equations for which the root cannot be easily determined



How to solve for roots of equations
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roots

direct method

approximation

analytical solution

numerical 
approximation
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Methods to solve for roots of equations

Bracketing methods
• Graphical methods
• The bisection method
• The false-position method

Open methods
• Simple fixed-point iteration
• The Newton-Raphson method
• The secant method
• Multiple roots
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Fall velocity of a parachutist

𝑣 =
𝑔𝑚

𝑐
1 − 𝑒− Τ𝑐 𝑚 𝑡

fall velocity

mass of the parachutist
time

drag coefficient

gravitational acceleration

ai generated image 2026

Problem statement
Find 𝑐 when 𝑣 = 40 m/s, 𝑚 = 68.1 kg, 𝑡 = 10 s, 
𝑔 = 9.8 m/s2
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𝑣 =
𝑔𝑚

𝑐
1 − 𝑒− Τ𝑐 𝑚 𝑡 ⟹ 40 =

9.8 68.1

𝑐
1 − 𝑒− Τ𝑐 68.1 10

⟺
9.8 68.1

𝑐
1 − 𝑒− Τ𝑐 68.1 10 − 40 = 0

𝑓 𝑐 = 0

𝒄 𝒇 𝒄

4 34.1148

8 17.6534

12 6.0669

16 −2.2688

20 −8.4006
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𝑣 =
𝑔𝑚

𝑐
1 − 𝑒− Τ𝑐 𝑚 𝑡 ⟹ 40 =

9.8 68.1

𝑐
1 − 𝑒− Τ𝑐 68.1 10

⟺
9.8 68.1

𝑐
1 − 𝑒− Τ𝑐 68.1 10 − 40 = 0

𝑓 𝑐 = 0

𝑓 14.75 =
9.8 68.1

14.75
1 − 𝑒− Τ14.75 68.1 10 − 40 = 0.059
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f(c
)

c

𝑓 𝑐 = 0

𝑐 = 14.75

𝑣 =
9.8 68.1

14.75
1 − 𝑒− Τ14.75 68.1 10 = 40.059 m/s
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Graphical methods

▪ use an application
▪ write a computer program
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Graphical methods



▪ Steps
1. Choose lower 𝑥𝑙 and upper 𝑥𝑢 guesses for the root suct that the function 

changes sign over the interval
2. An estimate of the root 𝑥𝑟 is determined by

𝑥𝑟 =
𝑥𝑙 + 𝑥𝑟

2
3. Make the following evaluations to determine in which subinterval the root lies

a) if 𝑓 𝑥𝑙 𝑓 𝑥𝑢 < 0, the root lies in the lower subinterval; therefore, set 𝑥𝑢 = 𝑥𝑟  and 
return to step 2

b) if 𝑓 𝑥𝑙 𝑓 𝑥𝑢 > 0, the root lies in the upper subinterval; therefore, set 𝑥𝑙 = 𝑥𝑟  and 
return to step 2

c) if 𝑓 𝑥𝑙 𝑓 𝑥𝑢 = 0, the root equals 𝑥𝑟; terminate the computation
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The bisection method
𝑓 𝑥 = 0
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The bisection method

⟺
9.8 68.1

𝑐
1 − 𝑒− Τ𝑐 68.1 10 − 40 = 0

𝑓 𝑐 = 0



𝒊 𝒄𝒊 𝒇 𝒄𝒊 𝒄𝒓 𝚫𝒄𝒓 𝝐𝒂

0 12 6.0669

1 16 -2.2688 14

2 14 1.5687 15 1 6.7%

3 15 -0.4248 14.5 1 6.9%

4 14.5 0.5523 14.75 -0.5 3.4%

5 14.75 0.0590 14.875 0.25 1.7%

6 14.875 -0.1841 14.8125 0.125 0.8%

7 14.8125 -0.0629 14.7813 -0.0625 0.4%

8 14.7813 -0.0020 14.7656 -0.0313 0.2%

9 14.7656 0.0284 14.7734 -0.0156 0.1%
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The bisection method 𝜖𝑎 =
𝑐𝑟

𝑛𝑒𝑤 − 𝑐𝑟
𝑜𝑙𝑑

𝑐𝑟
𝑛𝑒𝑤 100%



The bisection method
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The false-position method

▪ Pitfalls of the bisection method
• in dividing the interval from 𝑥𝑙  

to 𝑥𝑢 into equal halves, no 
account is taken of the 
magnitudes of 𝑓 𝑥𝑙  and 𝑓 𝑥𝑢

• if 𝑓 𝑥𝑙  is much closer to zero 
than 𝑓 𝑥𝑢 , it is likely that the 
root is closer to 𝑥𝑙  than to 𝑐𝑢

𝑓 𝑥𝑙

𝑓 𝑥𝑢

𝑓 𝑥

𝑥𝑙

𝑥𝑢

𝑋

𝑥𝑟 =
𝑥𝑙 + 𝑥𝑢

2
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𝑓 𝑥 = 0



The false-position method
▪ Apply a straight line joining 

𝑓 𝑥𝑙  and 𝑓 𝑥𝑢

• apply a straight line joining 
𝑓 𝑥𝑙  and 𝑓 𝑥𝑢

• the intersection of this line with 
the 𝑥 axis represents an 
improved estimate of the root

• thus, 𝑥𝑟  is

𝑓 𝑥𝑙

𝑥𝑟 − 𝑥𝑙
=

𝑓 𝑥𝑢

𝑥𝑟 − 𝑥𝑢

𝑥𝑟 = 𝑥𝑢 −
𝑓 ℎ𝑢

𝑓 ℎ𝑙 − 𝑓 ℎ𝑢
ℎ𝑙 − ℎ𝑢

𝑥𝑙

𝑥𝑟
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𝑓 𝑥𝑙

𝑓 𝑥𝑢

𝑓 𝑥

𝑥𝑢

𝑋



The false-position method
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𝑥𝑙

𝑥𝑟

𝑓 𝑥𝑙

𝑓 𝑥𝑢

𝑓 𝑥

𝑥𝑢

𝑋

0 − 𝑓 𝑥𝑙

𝑓 𝑥𝑢 − 𝑓 𝑥𝑙
𝑥𝑢 − 𝑥𝑙

𝑓 𝑥𝑢 − 0

𝑓 𝑥𝑢 − 𝑓 𝑥𝑙
𝑥𝑢 − 𝑥𝑙

𝑥𝑟 = 𝑥𝑙 −
𝑓 𝑥𝑙

𝑓 𝑥𝑢 − 𝑓 𝑥𝑙
𝑥𝑢 − 𝑥𝑙

𝑥𝑟 = 𝑥𝑢 −
𝑓 𝑥𝑢

𝑓 𝑥𝑢 − 𝑓 𝑥𝑙
𝑥𝑢 − 𝑥𝑙



𝒊 𝒄𝒊 𝒇 𝒄𝒊 𝒄𝒓 𝚫𝒄𝒓 𝝐𝒂

0 12 6.0669

1 16 -2.2688 14.9113

2 14.9113 -0.2543 14.7942 -0.1171 0.8%

3 14.7942 -0.0273 14.7817 -0.0125 0.1%

4 14.7817 -0.0029 14.7823 0.0006 0.0%
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The false-position method 𝜖𝑎 =
𝑐𝑟

𝑛𝑒𝑤 − 𝑐𝑟
𝑜𝑙𝑑

𝑐𝑟
𝑛𝑒𝑤 100%



The bisection vs the false-position method
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Pitfalls of the false-position method
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▪ There are certain cases where 
bisection yields superior 
results.

▪ Example
• Use bisection and false-

position methods to locate the 
root of

between 𝑥 = 0 and 1.3

𝑓 𝑥 = 𝑥10 − 1

-2
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14

0 0.2 0.4 0.6 0.8 1 1.2 1.4

f(x
)

x



▪ The method is known also as one-point iteration or successive 
substitution

▪ Steps
1) rearrange the function 𝑓 𝑥 = 0 so that 𝑥 is on the left-hand side of the 

equation

2) the transformation can be accomplished either by algebraic manipulation 
or by simply adding 𝑥 to both sides of the original equation
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Simple fixed-point iteration

𝑥 = 𝑔 𝑥

𝑥2 − 2𝑥 + 3 = 0 ⟺ 𝑥 =
𝑥2 + 3

2

sin 𝑥 = 0 ⟺ 𝑥 = sin 𝑥 + 𝑥

𝑓 𝑥 = 0



▪ Steps
3) given an initial guess at the root 𝑥𝑖, compute a new estimate 𝑥𝑖+1 by an 

iterative formula

▪ The approximate error for this equation can be detemined using the 
error estimator
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Simple fixed-point iteration

𝑥𝑖+1 = 𝑔 𝑥𝑖

𝜖𝑎 =
𝑥𝑖+1 − 𝑥𝑖

𝑥𝑖+1
100%



▪ Problem statemen
• Use simple fixed-point iteration to locate the root of 𝑓 𝑥 = 𝑒−𝑥 − 𝑥

▪ SolutionN
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Simple fixed-point iteration

𝑓 𝑥 = 𝑒−𝑥 − 𝑥 ⟹ 𝑥𝑖+1 = 𝑒−𝑥𝑖



𝒊 𝒙𝒊 𝒙𝒊+𝟏 𝝐𝒂 (%)

0 0 1 100
1 1 0.3679 171.8
2 0.3679 0.6922 46.9
3 0.6922 0.5005 38.3
4 0.5005 0.6062 17.4
5 0.6062 0.5454 11.2
6 0.5454 0.5796 5.9
7 0.5796 0.5601 3.5
8 0.5601 0.5711 1.9
9 0.5711 0.5649 1.1

10 0.5649 0.5684 0.6
11 0.5684 0.5664 0.4
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Simple fixed-point iteration



Simple fixed-point iteration
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The Newton-Raphson method
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▪ Steps
1) find the first derivative 𝑓′ 𝑥

2) start with an initial guess 𝑥𝑖

3) find the slope at point 𝑥𝑖, that 
is 𝑓′ 𝑥𝑖

4) compute the next estimate of 
the root 𝑥𝑖+1 by

5) iterate until convergence

𝑓 𝑥   

𝑋
𝑥𝑖

𝑓 𝑥𝑖

𝑥𝑖+1

slope = 𝑓′ 𝑥𝑖

𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖 − 0

𝑥𝑖 − 𝑥𝑖+1
⟺ 𝑥𝑖+1 = 𝑥𝑖 −

𝑓 𝑥𝑖

𝑓′ 𝑥𝑖

0

𝑓 𝑥 = 0

𝑥𝑖+1 = 𝑥𝑖 −
𝑓 𝑥𝑖

𝑓′ 𝑥𝑖



▪ Problem statement
• Use the Newton-Raphson method to estimate the root of 𝑓 𝑥 = 𝑒−𝑥 − 𝑥, 

employing an initial guess of 𝑥0 = 0

▪ Solution
• The first derivative of the function can be evaluated as

• Substitute the first derivative along with the original function into the 
equation of the root estimate
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The Newton-Raphson method

𝑓′ 𝑥 = −𝑒−𝑥 − 1

𝑥𝑖+1 = 𝑥𝑖 −
𝑓 𝑥𝑖

𝑓′ 𝑥𝑖
⟺ 𝑥𝑖+1 = 𝑥𝑖 −

𝑒−𝑥 − 𝑥

−𝑒−𝑥 − 1



𝒊 𝒙𝒊 𝒇 𝒙𝒊 𝒇′ 𝒙𝒊 𝒙𝒊+𝟏 𝝐𝒂 (%)

0 0 1 -2 0.5

1 0.5 0.1065 -1.6065 0.5663 11.7093

2 0.5663 0.0013 -1.5676 0.5671 0.1467

3 0.5671 0.0000 -1.5671 0.5671 2.2E-05
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The Newton-Raphson method

𝑥𝑖+1 = 𝑥𝑖 −
𝑒−𝑥 − 𝑥

−𝑒−𝑥 − 1

𝜖𝑎 =
𝑥𝑖+1 − 𝑥𝑖

𝑥𝑖+1
100%



The Newton-Raphson method
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▪ Pitfalls of the Newton-Raphson method
• the first derivative of the function may be difficult to evaluate
• the first derivative of the function may not exist
• the iteration may exhibit slow convergence (large number of iterations)
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The Newton-Raphson method

determine the positive root of 𝑓 𝑥 = 𝑥10 − 1 using the 
Newton-Raphson method and an initial guess of 𝑥 = 0.5



The Newton-Raphson method
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The secant method
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▪ Steps
1) start with two initial estimates of 𝑥
2) the derivative is approximated by a 

backward finite divided difference

3) compute the next estimate of the 
root 𝑥𝑖+1

4) iterate until convergence

𝑓 𝑥 = 0

slope = 𝑓′ 𝑥𝑖

requires two initial estimates of 𝑥

𝑓 𝑥

𝑓 𝑥𝑖

𝑓 𝑥𝑖−1

𝑋
𝑥𝑖−1 𝑥𝑖

𝑥𝑖+1 = 𝑥𝑖 −
𝑓 𝑥𝑖

𝑓′ 𝑥𝑖

𝑓′ 𝑥 ≅
𝑓 𝑥𝑖−1 − 𝑓 𝑥𝑖

𝑥𝑖−1 − 𝑥𝑖



▪ Problem statement
• use the secant method to estimate the root of 𝑓 𝑥 = 𝑒−𝑥 − 𝑥

• start with initial estimates of 𝑥−1 = 0 and 𝑥0 = 1

▪ Solution
• The first derivative of the function can be evaluated as

• Substitute the first derivative along with the original function into the 
equation of the root estimate
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The secant method

𝑓′ 𝑥−1,0 ≅
𝑓 𝑥−1 − 𝑓 𝑥0

𝑥−1 − 𝑥0
=

𝑒−0 − 0 − 𝑒−1 − 1

0 − 1
=

𝑥1 = 𝑥0 −
𝑓 𝑥0

𝑓′ 𝑥−1,0
⟺ 𝑥1 = 𝑥0 −

𝑒−1 − 1



𝒊 𝒙𝒊 𝒇 𝒙𝒊 𝒇′ 𝒙𝒊 𝒙𝒊+𝟏 𝝐𝒂 (%)

-1 0 1

0 1 -0.6321 -1.6321 0.6127

1 0.6127 -0.0708 -1.4493 0.5638 8.6659

2 0.5638 0.0052 -1.5553 0.5672 0.5875

3 0.5672 0.0000 -1.5681 0.5671 0.0048

4 0.5671 0.0000 -1.5671 0.5671 0.0000
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The secant method



The secant method
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▪ A multiple root corresponds to a point where a function is 
tangent to the 𝑥 axis.
• example: a double root results from

• example: a triple root results from
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Multiple roots

𝑓 𝑥 = 𝑥 − 3 𝑥 − 1 𝑥 − 1

⟺ 𝑓 𝑥 = 𝑥3 − 5𝑥2 + 7𝑥 − 3

𝑓 𝑥 = 𝑥 − 3 𝑥 − 1 𝑥 − 1 𝑥 − 1

⟺ 𝑓 𝑥 = 𝑥4 − 6𝑥3 + 12𝑥2 − 10𝑥 + 3



Multiple roots
N

um
er

ic
al

 M
et

ho
ds

ht
tp

s:
//

is
tia

rt
o.

st
af

f.u
gm

.a
c.

id

39

▪ Modified Newton-Raphson method

𝑓 𝑥 = 0

𝑢 𝑥 =
𝑓 𝑥

𝑓′ 𝑥

𝑥𝑖+1 = 𝑥𝑖 −
𝑓 𝑥𝑖

𝑓′ 𝑥𝑖

it can be shown that this function, 𝑢 𝑥 , has roots at 
all the same locations as the original function, 𝑓 𝑥

𝑥𝑖+1 = 𝑥𝑖 −
𝑢 𝑥𝑖

𝑢′ 𝑥𝑖

differentiation

𝑢′ 𝑥 =
𝑓′ 𝑥 𝑓′ 𝑥 − 𝑓 𝑥 𝑓′′ 𝑥

𝑓′ 𝑥 2

𝑥𝑖+1 = 𝑥𝑖 −
𝑓 𝑥𝑖 𝑓′ 𝑥𝑖

𝑓′ 𝑥𝑖
2 − 𝑓 𝑥𝑖 𝑓′′ 𝑥𝑖



▪ Problem statement
• Use both the standard and modified Newton-Raphson methods to 

evaluate the multiple root of

• with an initial guess of 𝑥0 = 0

▪ Solution
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Multiple roots

𝑓 𝑥 = 𝑥 − 3 𝑥 − 1 𝑥 − 1

𝑓 𝑥 = 𝑥3 − 5𝑥2 + 7𝑥 − 3

𝑓′ 𝑥 = 3𝑥2 − 10𝑥 + 7

𝑓′′ 𝑥 = 6𝑥 − 10

𝑥𝑖+1 = 𝑥𝑖 −
𝑥𝑖

3 − 5𝑥𝑖
2 + 7𝑥𝑖 − 3

3𝑥𝑖
2 − 10𝑥𝑖 + 7

𝑥𝑖+1 = 𝑥𝑖 −
𝑥𝑖

3 − 5𝑥𝑖
2 + 7𝑥𝑖 − 3 3𝑥𝑖

2 − 10𝑥𝑖 + 7

3𝑥𝑖
2 − 10𝑥𝑖 + 7 2 − 𝑥𝑖

3 − 5𝑥𝑖
2 + 7𝑥𝑖 − 3 6𝑥 − 10

the NR method

the modified NR method
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Multiple roots
𝒊 𝒙𝒊 𝒇 𝒙𝒊 𝒇′ 𝒙𝒊 𝒙𝒊+𝟏 𝝐𝒂 (%)
0 0 -3 7 0.428571

1 0.4286 -0.8397 3.2653 0.6857 37.50

2 0.6857 -0.2286 1.5535 0.8329 17.67

3 0.8329 -0.0605 0.7523 0.9133 8.81

4 0.9133 -0.0157 0.3692 0.9558 4.44

5 0.9558 -0.0040 0.1827 0.9777 2.24

6 0.9777 -0.0010 0.0909 0.9888 1.12

7 0.9888 -0.0003 0.0453 0.9944 0.56

8 0.9944 -0.0001 0.0226 0.9972 0.28

9 0.9972 0.0000 0.0113 0.9986 0.14

10 0.9986 0.0000 0.0057 0.9993 0.07

The Newton-Raphson method
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Multiple roots
𝒊 𝒙𝒊 𝒇 𝒙𝒊 𝒇′ 𝒙𝒊 𝒇′′ 𝒙𝒊 𝒙𝒊+𝟏 𝝐𝒂 (%)
0 0 -3 7 -10 1.105263

1 1.1053 -0.0210 -0.3878 -3.36842 1.003082 10.1868

2 1.0031 0.0000 -0.0123 -3.98151 1.000002 0.3079

3 1.0000 0.0000 0.0000 -3.99999 1 0.0002

The modified Newton-Raphson method



Multiple roots
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Numerical Methods
Roots of Equations
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