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Numerical Methods

Linear Algebraic
Equations
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Linear algebraic equations

B Reference

= * Chapra, S.C., Canale, R.P., 2015, Numerical
Methods for Engineers, 7th Ed., McGraw-Hill
Book Co., New York

= * Part Three: Chapters 9to12 (pp 231 to 343)

Numerical Methods
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Linear algebraic equations

A1 X1 + A1oXy + o+ A1 X = C
11%1 1242 Intn 1 | the a’s are contant

Ay1Xq + AyoXoy + o+ + Ao X e
a system of linear 2171 2272 Znsn coefficients, the c’s
algebraic equations _ are constants, and n
is the number of
equations

I
)
N

Numerical Methods

Ap1X1 + ApaXy + -+ AppXny = Cy

\ J
|
need to solve these equations
simultaneously, that is finding x’s
that satisfy every single equation
in the system
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The methods

Small sets of simultaneous eqs. Large sets of simulatneous eqs.

Naive Gauss elimination

Numerical Methods

Gauss-Jordan

The graphical method

Cramer’s rule

LU decomposition

-

The matrix inverse

Jacobi

Gauss-Seidel

Elimination of unknowns
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Successive under-/over-relaxation

Special matrices
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The graphical method
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The graphical method

X nearly parallel X overalapped X parallel

Numerical Methods
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ill-conditioned system: singular system: singular system:
the slopes are so close that infinite solutions no solution

the point of intersection is

difficult to detect visually




Cramer’s rule

" The rule states that each unknown in a system of linear albebraic
equations may be expressed as a fraction of two deteminants with
denominator D (determinant of the equations) and with the numerator
obtained from D by replacing the column of coefficient of the unknown
in question by the constants ¢4, ¢, ..., Cy,

Numerical Methods

" Example
A11X1 T Q12X T A13X3 = Cq
Az1X1 T AppXy + Ap3X3
A31X1 T+ A32Xy + A33X3 = C3
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Numerical Methods
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Cramer’s rule

aj1 Az
[A] = A = |01 QA
d3z1 dazp
€1 Q12 Qi3
C2 Az A3
_ 163 Az da4szz
X1 = D

ais
a3
as3

aq1
D =detd = |A21
az1
a1 €61 Qg3
dz1 €2 QA3
dz1 C3 d3z3
D

aip QA3

Az, d»s

as,; dadss
aij; A2 G
a1 Az OC
a a C

X3 = 31 32 3

D



Cramer’s rule

g " How to find the determinant of a square 2-by-2 matrix?
§ (A]=A4= [a11 a12]
-7 [azn ap
11 Q412
D =detd = ayy Qg = aA110972 — Aq120921
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Cramer’s rule
" How to find the determinant of a square 3-by-3 matrix?
di1 A1z Qg3

[B] = B = |G21 Q2 Qz3
az1 dzz d4z3

Numerical Methods

aij; Q12 Qg3
D =detB = |A21 Q22 Q3| =aq,
a3z1 A3y A3z

a1 A
azq1 dsp

a1 Az3
aszq1 Qassz

ain a3

= a11(aza33 — ay3a3;) — a12(az1a33 — Az3a3;) + ay3(az1a32 — az2a31)
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Cramer’s rule

8 " Example

: P A-X=C

= 3x; — 0.1x, — 0.2x3 = 7.85 3 —-01 -0.2](% 7.85

= 0.1x; + 7x, — 0.3x3 = —19.3 01 7 —0.3] {xz} = {—19.3}
0.3x; — 0.2x, + 10x; = 71.4 03 —0.2 10 1{x3 71.4

detA = 3{7 x 10 — (—0.3) X (—0.2)} + 0.1{0.1 x 10 — (—0.3) x 0.3} — 0.2{0.1 x (—0.2) — 7 X 0.3}
detA = 210.353
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Cramer’s rule

3 7.85 —0.2
0.1 -193 -0.3
0.3 714 10

785 —0.1 -0.2
—19.3 7 —0.3
714 —-0.2 10

Numerical Methods

A= 0.1 7 —19.3

03 -02 714

A2=

3 —-01 785
A3 ==

detA, = |4,| = 631.059  detd, = |A,| = —525.8825 detA; = |A5| = 1472.471

_detA; _ 631058 __
1= qetd 210353

_detA, —525.8825 detA; 1472471

— — — _9oc — — —
2= qetd 210353 X3 = qetd _ 210353
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Elimination of unknowns

" The elimination of unknowns by combining equations is an algebraic
approach that can be illustrated for a set of two equations

Numerical Methods

A11X1 + QX = €1 = A1(A11X1 + QX3 =€) = Ap1Q11X1 + Ap1012Xy = Ap1Cy
Ap1X1 + AxpXy = C; = a1(Ap1X1 + AppXy = C3) = A11021X1 + A11022X5 = A11Cy

Ax1A12X2 — A11022Xy = A21C1 — A11C

az1C61 — A116

ax1A12 — A110422

X2
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X1 = = —

C1 — A12X2 C1 ai ( ax1C1 — A11C )
aiq aij;1  Aaqq

az1012 — A110722
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Numerical Methods
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Elimination of unknowns

" Example

3x1 + ZXZ =18 = _(3x1 + sz = 18)
—x1+2x, =2 = 3(—xq+2x, =2)

= —3x1 — 2x2 = —18
= —3x1 + 6x2 =6
_8x, = —24
-
Xy = _3 =

18 —2x, 18-2(3) 12

3 3 3 =4



Numerical Methods
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Naive Gauss elimination

" Strategy
®* Forward elimination of unknowns
® Backward substitution

= Example
ay1X1 + agx; +a;zxz =c¢; (1)
Ap1X1 + AppX; + Ax3Xx3 = ¢  (2)
az1Xq + azxx; + azzxz3 =c3  (3)



Naive Gauss elimination

" Forward elimination #1
* eliminate x4 from eqgs. (2) and (3) by using eq. (1) as the pivot
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=l nivot coefficient pivot equation
&
3 f— —
= @1 1T 02X T A13X3 = A11%1 + A12x; + ag3x3 =¢; (1)
7
e
s a a a
2 21 21 21 ' ' o '
S (azz - —a12>x2 + (azs - —a13>x3 =C——C Ag2%z + Az3%3 = ¢z (2)
8 a1 a1 a1
; a cl a X, +\a 2l a X3 =¢C b1 C ! ! ! !
32 12 | X2 — 1 =C(3——( _
i 33 7 g, M3 T T az,X, + az3x3 =c3 (3")
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Naive Gauss elimination

" Forward elimination #2
* eliminate x, from eq. (3) by using eq. (2') as the pivot
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=l nivot coefficient pivot equation
O
©
£
£
;- a11%1 + 12X + A13X3 = 4 aj1%1 + aix; + ag3x3 =¢; (1)
S
8
= / ’ o ’ / o '
S A2/ T A3X3 = (3 Az2X2 + Az3x3 =3  (2)
5
E / /
a- A5 a5z | X3 = C3 %52 5 " " ’"
_ 132 L =cl— _
. 33 7 g 23 37 g aszx; =c3 (3")




Numerical Methods
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Naive Gauss elimination

" Backward substitution
* find x5 fromeq. (3"), x, from eq. (2'), and x; from eq. (1)

144 ! 14
C3 Cy — ady3X3
X3 = I ‘ x2 = I} ‘ xl -
azs Az,



Numerical Methods
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Naive Gauss elimination

Forward elimination

ai1xX1 4 aA12X> + aA13X3 + -+ A1nXn =

A5,X5 + Ao3X3 + -+ Aoy Xy = Cp
a.,2’3x3 + ot aISInxn = Cél

ann xTL - CTl

C1

Backward substitution




Naive Gauss elimination

" Example

(1) 3%, —0.1x, — 0.2x; = 7.85
(2) 0.1x; + 7x, — 0.3x3 = —19.3

Numerical Methods
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Numerical Methods
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Naive Gauss elimination

" Forward elimination
* eliminate x4 from eqgs. (2) and (3) by using eq. (1) as the pivot
(1) 3x;—0.1x, —0.2x3 = 7.85
(2") 0xq4 +7.0033x, —0.2933x3 = —19.5617
(3") 0x; —0.19x, + 10.02x3; = 70.615

* eliminate x, from eq. (3) by using eq. (2') as the pivot
(1) 3x;—0.1x, —0.2x3 = 7.85
(2") 0xqy +7.0033x, —0.2933x3 = —19.5617
(3") 0x; + 0x, +10.0120x3 = 70.0843



Numerical Methods

S
o
&
S
o0
35

[Py

“—
©
+—
<
(@]
=
o
@©
=
2
<
o3
(/2]
o
e
=
=

N
N

Naive Gauss elimination

®  Back substitution
* find x5 fromeq. (3")
70.0843

7y
*3 = 70.0120

* substitute x5 to eq. (2) to get x,

 —19.5617 + 0.2933(7)
X2 = 7.0033 B

—2.5

* substitute x5 and x, to eq. (1) to get x4

7.85 4 0.2 X 7 + 0.1(—2.5)
X1 = 3 =3




Numerical Methods
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Naive Gauss elimination

" Pitfalls of the naive Gauss elimination

* itis possible that division by zero can occur during both the forward
elimination and the back substitution phases

* problem of round-off errors can become particularly important when large
numbers of equations are to be solved
* thisis dueto the fact that every result is dependent on previous results
* anerrorin the early steps will tend to propagate, that s, it will cause errors in
subsequent steps
* ill-conditioned systems, where small changes in coefficients result in large
changes in the solution



Naive Gauss elimination

® Techniques for improving solutions

* determine the largest available coefficient in the column below the pivot
element

Numerical Methods

* switch the rows so that the largest element is the pivot element

* => rearranging the equations such that the pivot equation is the one that
gives the largest pivot coefficient
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Numerical Methods
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Gauss-Jordan

B Gauss-Jordan method is a variation of Gauss elimination

* when an unknown is eliminated in the Gauss-Jordan method, itis
eliminated from all other equations rather than just the subsequent ones

* allrows are normalized by dividing them by their pivot elements

* the elimination step results in an identity matrix rather than a triangular
matrix

" Example



Gauss-Jordan
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(3 —-01 -0.2| 7.85 —>—F1 —0.0333 —0.0667|2.6167

l0.1 7 —03 —19.3] 0.1 7 —0.3 —19.3]
8 103 —01 101 714 ———103) -01 10 71.4
B [3/3 —01/3 -0.2/3]|7.85/3 1 -0.0333 —0.0667| 2.6167
£ lo.1 7 —0.3 —19.3] [0 ~0.2933 —19.5617]

03 —0. 10 | 714 0 —0.1900 10.0200! 70.6150

N
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Gauss-Jordan

= 1 —-0.0333 -0.0667| 2.6167
§ [O 7.0033 —0.2933 —19.5617] ]
z 0 —0.1900 10.02001 70.6150
1 —0.0333 —0.0667 2.6167
[0/7.0033 7.0033/7.0033 —0.2933/7.0033 —19.5617/7.0033]
0 —0.1900 10.0200 70.6150
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2.6167 [1 0 —0.0681| 2.5236
27931| mm) [0 1 —0.0419]-2.7931
70.6150] 0 0 (10.01201 70.0843

1 (=0.0333) —0.0667
— [0 ~0.0419
~ lo <0.1900) 10.0200
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Gauss-Jordan

1 0 —0.0681 2.5236
0 1 —0.0419 —2.7931
0/10.0120 0/10.0120 10.0120/10.0120{70.0843/10.0120

—[1 0 =0.068D| 2.5236 1 0 0] 3 X1
—>|0 1 =0.0419(—2.7931 =) |0 1 o|-25 ) x,
—10 0 1 7 0 0 1l 7 X3




Gauss-Jordan

" |t has more operations than Gauss elimination by 50%

" |t has the same pitfalls, i.e.
* division by zero

Numerical Methods

* large round-off errors
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Numerical Methods
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LU decomposition

®  Gauss elimination 2 LU decomposition

a11 a12 a13 1 O O a’ll a12 a13
[a21 oY) azs] —|fz1 1 0|0 az; Ay
az1 dzz 0ass fz1 fzz 1f] O 0 a3
\ ) \ )\ )
Y Y Y

[A] {L} U]

az1 asi as,

foi=— fza1=— f32 =——

aiq

!/
a11 22



LU decomposition
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LU decomposition

(2]
'8
c
s ®  Stepsto obtain U following Gauss elimination
©
= . Step1:forwardelimination
£
Z {all aAqi2 a13 a11 Az Ag3
/ /

1021 A22 a23 Az A3
© ~ !
é az1 Qs as, dadsz3
£
£
& * Step 2: forward elimination
(@]
g {(111 A, a13] [a11 A1z  A13 i1 Q12 Q4g3
< !/ / !/ !/
3 021 Gyy Ay3| — 0 Ay a23] — | 0 az; ap;
E /_a31 a32 a33 > O a’32 a’33 O 0 a,3,3

32

v
U]




LU decomposition

" Example

(2) 0.1x; + 7x, — 0.3x3 = —19.3
(3) 0.3x1 — O.sz + 10x3 =714

3 —01 -=0.27(*1 7.85
0.1 7 —0.3[yX2¢ =1—19.3
0.3 —-0.2 10 1\X3 71.4

4] S S (4

Numerical Methods
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LU decomposition

0 7.0033 -—0.2933
0 0 10.0120

n
©
o
d=
=
(0]
b
©
(&)
=
o
S
>
Z

3 —01 —0.2 —0.1 —0.2 3 —0.1 —0.2
0.1 —03 =) lo 7.0033 —0.2933| = [U] =
0.3 —02 —0.19 10.0200.

a 0.1
fpg = —= = —— = 0.0333

% a1 3

£ az; 0.3 1 0 0
g fa=——=—=01 [L] = [0.0333 1 0‘
g 1 0.1000 =0.0271 1
: T

g f32 = a,, 7.0033

wW
N




LU decomposition

[LItD} = {C}

1 0 01 (d4 7.85
[0.0333 1 o‘ d, ={—19.3}

0.1000 0.0271 11\ds 71.4

Numerical Methods

0.0333d, + d, = —19.3 & d, = —19.3 — 0.0333(7.85) = —19.5617

0.1d, + 0.0271d, + d5 = 71.4
& dy = 71.4 — 0.1(7.85) — 0.0271(—19.5617) = 70.0843
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LU decomposition

[UltX} = {D}

3 —-01 —0.2 X1 7.85
0 7.0033 —0.2933]|¢*2¢ =1—19.5617

0 0 10.01201 X3 70.0843

%)
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5]
b
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3]
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Z

70.0843

£

ﬁ 10.0120x3 = 70.0843 © x5 = 100130 = 7

: 7.0033 0.2933x:, = —19.5617 = x, = —19:5617 +0.2933(7) _ 2.5

: WU33x; = 0.£933x3 = —17. X2 = 7.0033 e

S 3%, — 0.1x, — 0.2x; = 7.85 )
= x1 - — 3 7

3




Numerical Methods
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The matrix inverse

[A] - {X} = {C} = {X} = [A]* - {C}

1 0 O

1 -

0 O

a1 Ay QA3

[a11 aip; Qg3
a3zq1 A3y A3z3

-1
a;
-1
az»
-1
as;




The matrix inverse

" Example

(3) 0.3x; — 0.2x, + 10x5 = 71.4

3 —-0.1 —0.2](* 7.85

o1 7 —osfluf- {193

03 —02 10 Ilx; 714
4] X} 0

Numerical Methods
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The matrix inverse

Numerical Methods

3 -01 —02[1 0 0 1 —0.0333 —0.0667]0.3333 0 0
[Al=[01 7 03[0 1 o|/m[l=(001 7 03 | 0 1 0]
03 —02 1010 0 1 (03 —0.2 10 0 0 1

!
: 1 —0.0333 —0.0667| 0.3333 0 0
: [4] = |0 ~0.2933|—0.0333 1 0]
: 0 —0.1900 10.02001-0.0999 0 1

39




The matrix inverse

—

1 =0.0333) —0.0667

—0.0047 0.1422 O
—0.0999 0 1

Numerical Methods

0.3333 0 O‘

0 (1\ —0.0417
0 ©0.1900) 10.0200
N——_

1 0 —0.0681| 03318 0.0047 0
0 1 —00417|-0.0047 0.1422 0
0 0 (10.01201—0.1009 0.0270 1

[4] =
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The matrix inverse

n
o
o
=
=
()
b
©
O
=
()
=
=]
Z

[A]7Y

1 0.3318 0.0047 0
[A] = |0 —0.0047 0.1422 0 ]
0 —0.0101 0.0027 0.0999
:
= 1 0 0] 03325 0.0049 0.0068
g [A]=(0 1 0[-0.0052 0.1423 0.0042]
£ 0 0 11-0.0101 0.0027 0.0999

N
—




The matrix inverse

{x} =[41"H{c}

X1 0.3325 0.0049 0.006871( 7.85
x2 pr—
X3

—0.0052 0.1423 0.0042]|9—19.3
X1 3.0004
X2 =1—2.4881
X3 7.0002

Numerical Methods

—0.0101 0.0027 0.09991\ 71.4
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The matrix inverse

" Pitfalls
* The matrix inverse may not exist

" MS Excel
* =MINVERSE() cntrl+shift+enter
* =MMULT() cntrl+shift+enter

Numerical Methods
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Jacobi

[2])
©
o
c
5 — _ 0 _ :
N (11X1 t Q12X2 T A13X3 = €1 jpitial guesses, X1 =0 continue the
@© —
= Az1X1 + Az2X7 T Az3X3 = C; e.g.x2=0 xg =0 iteration until
M a31X1 T A3xX; + A33X3 = C3 N~y
= xy =0 X" =X, VX
9
S 0 0 _ n_ n
£ C1 — Aq2Xp — A13X3 1 = €1 — Qq2X3 — A13X3 AL — €1 — Q12X — A13X3
EN X = 1 — a 1 a1
= a1 11
2 _ _ _ n _ n
i _ G2 Ga1X1 — a3X3 | €= G1X] — Ap3X3 o+t = G2 7 QX1 T dasXs
s ayy X2 = a 2 az2
k] 22
B C3 — d3z1Xq — A32X3 0 0 — n_ n
N X, = | C3—azi1X] — azzX; (0 — C3 — d31X] — A32X7
= @33 3 = a ’ 33
33

N
N




Jacobi

" Example

(2) 0.1x; + 7x, — 0.3x3 = —19.3
(3) 0.3x1 — O.sz + 10x3 =714
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Jacobi

I T - T - T
0 0 0 0

oo B~ W DN

2.616667
3.000762
3.000806
3.000022
2.999999

-2.75714

-2.48852

-2.49974
-2.5
-2.5

7.14
7.006357
7.000207
6.999981
6.999999

7.14
0.3840952
0.0112146
0.0007839
2.385E-05
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Gauss-Seidel

1 €17 Q12X aq3X3
xXi =

aii

0 0
1 G2 = Qp1X1 — Qz3X3
X5, =

a2
1 G a31%7 — A32X)
X3 =

ass

n
n+1 . €1 7 Qq2X3 — Aq13X3
Xy =
i1
n+1 n
n+1 . G2 —A21X1 A23X3
Xy T =
a2
n+1 n+1
n+1 . €17 31X A3z2X7
X3 =
as3

continue the

iteration until

n+1l _ ..n
X; =X, VX



Gauss-Seidel

" Example

(2) 0.1x; + 7x, — 0.3x3 = —19.3
(3) 0.3x1 — O.sz + 10x3 =714
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Gauss-Seidel

I T - T - T
0 0 0 0

oo B~ W DN

2.616667
2.990557
3.000032
3
3

-2.79452

-2.49962

-2.49999
-2.5
-2.5

7.00561
7.000291
6.999999

7
7

7.0056095
0.3738898
0.0094754
3.155E-05
3.544E-07
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Successive over-relaxation

n n
C1 — Q12X — A13X3

AL —
! a1
o ¢y — Az | AxPH + (1 — D] — aysx¥
a2
R 3 — gy [T 4+ (1 — D] — asp[AxZH + (1 — D)F]

as3

0<A<1 under-relaxation
Ax] 1+ (1= D] {

1< A< 2 over-relaxation



Successive over-/under-relaxation

" Example

(2) 0.1x; + 7x, — 0.3x3 = —19.3
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Successive over-/under-relaxation

n
o
o
=
=
()
b
©
O
=
()
=
=]
Z

A=15
I T - T - I
0 0 0 0

- 1 2.616667 -2.81321 6.937854 6.93785357
igi 2 2.985416 -2.50509 6.997886 0.36874976
% 3 2.999689 -2.50019 6.99984 0.01427299
g 4 2.999983 -2.50001 6.999998 0.00029368
;Z 5 3 -2.5 7 1.6465E-05

(o))
N
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