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▪ Reference
• Chapra, S.C., Canale, R.P., 2015, Numerical 

Methods for Engineers, 7th Ed., McGraw-Hill 
Book Co., New York
• Part Three: Chapters 9 to12 (pp 231 to 343)
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𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑐1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑐2

.

.

.
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑛𝑥𝑛 = 𝑐𝑛

a system of linear 
algebraic equations

the 𝑎’s are contant 
coefficients, the 𝑐’s 
are constants, and 𝑛 
is the number of 
equations 

need to solve these equations 
simultaneously, that is finding 𝑥’s 
that satisfy every single equation 
in the system



Small sets of simultaneous eqs. Large sets of simulatneous eqs.
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The graphical method

Cramer’s rule

Elimination of unknowns

The methods

Naïve Gauss elimination

Gauss-Jordan

LU decomposition

The matrix inverse

Jacobi

Gauss-Seidel

Successive under-/over-relaxation

Special matrices



The graphical method
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𝑥2 = ⋯

𝑋2

𝑋1𝑥1 = ⋯



The graphical method
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x2

x1

x2

x1

x2

x1
ill-conditioned system:
the slopes are so close that 
the point of intersection is 
difficult to detect visually

singular system:
infinite solutions

singular system:
no solution

paralleloveralappednearly parallel



▪ The rule states that each unknown in a system of linear albebraic 
equations may be expressed as a fraction of two deteminants with 
denominator 𝐷 (determinant of the equations) and with the numerator 
obtained from 𝐷 by replacing the column of coefficient of the unknown 
in question by the constants 𝑐1, 𝑐2, … , 𝑐𝑛

▪ Example
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Cramer’s rule

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑐1

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑐2

𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑐3



Cramer’s rule
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𝐴 = 𝑨 =

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝐷 = det 𝑨 =

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝑥1 =

𝑐1 𝑎12 𝑎13

𝑐2 𝑎22 𝑎23

𝑐3 𝑎32 𝑎33

𝐷
𝑥2 =

𝑎11 𝑐1 𝑎13

𝑎21 𝑐2 𝑎23

𝑎31 𝑐3 𝑎33

𝐷
𝑥3 =

𝑎11 𝑎12 𝑐1

𝑎21 𝑎22 𝑐2

𝑎31 𝑎32 𝑐3

𝐷



▪ How to find the determinant of a square 2-by-2 matrix?
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Cramer’s rule

𝐴 = 𝑨 =
𝑎11 𝑎12

𝑎21 𝑎22

𝐷 = det 𝑨 =
𝑎11 𝑎12

𝑎21 𝑎22
= 𝑎11𝑎22 − 𝑎12𝑎21



▪ How to find the determinant of a square 3-by-3 matrix?
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Cramer’s rule

𝐵 = 𝑩 =

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝐷 = det 𝑩 =

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

= 𝑎11

𝑎22 𝑎23

𝑎32 𝑎33
− 𝑎12

𝑎21 𝑎23

𝑎31 𝑎33
+ 𝑎13

𝑎21 𝑎22

𝑎31 𝑎32

= 𝑎11 𝑎22𝑎33 − 𝑎23𝑎32 − 𝑎12 𝑎21𝑎33 − 𝑎23𝑎31 + 𝑎13 𝑎21𝑎32 − 𝑎22𝑎31



▪ Example
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Cramer’s rule

3𝑥1 − 0.1𝑥2 − 0.2𝑥3 = 7.85
0.1𝑥1 + 7𝑥2 − 0.3𝑥3 = −19.3
0.3𝑥1 − 0.2𝑥2 + 10𝑥3 = 71.4

𝑨 ∙ 𝑿 = 𝑪

3 −0.1 −0.2
0.1 7 −0.3
0.3 −0.2 10

𝑥1

𝑥2

𝑥3

=
7.85

−19.3
71.4

det 𝑨 = 3 7 × 10 − −0.3 × −0.2 + 0.1 0.1 × 10 − −0.3 × 0.3 − 0.2 0.1 × −0.2 − 7 × 0.3

det 𝑨 = 210.353



Cramer’s rule
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𝑨1 =
7.85 −0.1 −0.2

−19.3 7 −0.3
71.4 −0.2 10

𝑨2 =
3 7.85 −0.2

0.1 −19.3 −0.3
0.3 71.4 10

𝑨3 =
3 −0.1 7.85

0.1 7 −19.3
0.3 −0.2 71.4

det 𝑨1 = 𝑨1 = 631.059 det 𝑨2 = 𝑨2 = −525.8825 det 𝑨3 = 𝑨3 = 1472.471

𝑥1 =
det 𝑨1

det 𝑨
=

631.058

210.353
= 3

𝑥2 =
det 𝑨2

det 𝑨
=

−525.8825

210.353
= −2.5 𝑥3 =

det 𝑨3

det 𝑨
=

1472.471

210.353
= 7



▪ The elimination of unknowns by combining equations is an algebraic 
approach that can be illustrated for a set of two equations
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Elimination of unknowns

𝑎11𝑥1 + 𝑎12𝑥2 = 𝑐1 ⟹ 𝑎21 𝑎11𝑥1 + 𝑎12𝑥2 = 𝑐1 ⟹ 𝑎21𝑎11𝑥1 + 𝑎21𝑎12𝑥2 = 𝑎21𝑐1

𝑎21𝑥1 + 𝑎22𝑥2 = 𝑐2 ⟹ 𝑎11 𝑎21𝑥1 + 𝑎22𝑥2 = 𝑐2 ⟹ 𝑎11𝑎21𝑥1 + 𝑎11𝑎22𝑥2 = 𝑎11𝑐2

𝑎21𝑎12𝑥2 − 𝑎11𝑎22𝑥2 = 𝑎21𝑐1 − 𝑎11𝑐2

𝑥2 =
𝑎21𝑐1 − 𝑎11𝑐2

𝑎21𝑎12 − 𝑎11𝑎22

𝑥1 =
𝑐1 − 𝑎12𝑥2

𝑎11
=

𝑐1

𝑎11
−

𝑎12

𝑎11

𝑎21𝑐1 − 𝑎11𝑐2

𝑎21𝑎12 − 𝑎11𝑎22

−



▪ Example
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Elimination of unknowns

3𝑥1 + 2𝑥2 = 18 ⟹ − 3𝑥1 + 2𝑥2 = 18 ⟹ −3𝑥1 − 2𝑥2 = −18

−𝑥1 + 2𝑥2 = 2 ⟹ 3 −𝑥1 + 2𝑥2 = 2 ⟹ −3𝑥1 + 6𝑥2 = 6

−8𝑥2 = −24

𝑥2 =
−24

−8
= 3

𝑥1 =
18 − 2𝑥2

3
=

18 − 2 3

3
=

12

3
= 4

−



▪ Strategy
• Forward elimination of unknowns
• Backward substitution

▪ Example
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Naïve Gauss elimination

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑐1 1

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑐2 2

𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑐3 3



▪ Forward elimination #1
• eliminate 𝑥1 from eqs. (2) and (3) by using eq. (1) as the pivot

N
um

er
ic

al
 M

et
ho

ds

16

ht
tp

s:
//

is
tia

rt
o.

st
af

f.u
gm

.a
c.

id

Naïve Gauss elimination

pivot equationpivot coefficient

𝑎22 −
𝑎21

𝑎11
𝑎12 𝑥2 + 𝑎23 −

𝑎21

𝑎11
𝑎13 𝑥3 = 𝑐2 −

𝑎21

𝑎11
𝑐1

𝑎32 −
𝑎31

𝑎11
𝑎12 𝑥2 + 𝑎33 −

𝑎31

𝑎11
𝑎13 𝑥3 = 𝑐3 −

𝑎31

𝑎11
𝑐1

𝑎22
′ 𝑥2 + 𝑎23

′ 𝑥3 = 𝑐2
′ 2′

𝑎32
′ 𝑥2 + 𝑎33

′ 𝑥3 = 𝑐3
′ 3′

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑐1 1𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑐1



▪ Forward elimination #2
• eliminate 𝑥2 from eq. (3) by using eq. (2′) as the pivot
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Naïve Gauss elimination

pivot equationpivot coefficient

𝑎22
′ 𝑥2 + 𝑎23

′ 𝑥3 = 𝑐2
′

𝑎33
′ −

𝑎32
′

𝑎22
′ 𝑎23

′ 𝑥3 = 𝑐3
′ −

𝑎32
′

𝑎22
′ 𝑐2

′

𝑎22
′ 𝑥2 + 𝑎23

′ 𝑥3 = 𝑐2
′ 2′

𝑎33
′′ 𝑥3 = 𝑐3

′′ 3′′

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑐1 1𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑐1



▪ Backward substitution
• find 𝑥3 from eq. (3′′), 𝑥2 from eq. (2′), and 𝑥1 from eq. (1)
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Naïve Gauss elimination

𝑥3 =
𝑐3

′′

𝑎33
′′ 𝑥2 =

𝑐2
′ − 𝑎23

′ 𝑥3

𝑎22
′ 𝑥1 =

𝑐1 − 𝑎12𝑥2 − 𝑎13𝑥3

𝑎11



Forward elimination Backward substitution
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Naïve Gauss elimination

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑐1

𝑎22
′ 𝑥2 + 𝑎23

′ 𝑥3 + ⋯ + 𝑎2𝑛
′ 𝑥𝑛 = 𝑐2

′

𝑎23
′′ 𝑥3 + ⋯ + 𝑎3𝑛

′′ 𝑥𝑛 = 𝑐3
′′

.

.

.
𝑎𝑛𝑛

𝑛−1𝑥𝑛 = 𝑐𝑛
𝑛−1

𝑥𝑛 =
𝑐𝑛

𝑛−1

𝑎𝑛𝑛
𝑛−1

𝑥𝑖 =
𝑐𝑖

𝑖−1 − σ𝑗=𝑖+1 𝑎𝑖𝑗
𝑖−1𝑥𝑗

𝑎𝑖𝑖
𝑖−1

, 𝑖 = 𝑛 − 1, 𝑛 − 2, ⋯ , 1



▪ Example
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Naïve Gauss elimination

1 3𝑥1 − 0.1𝑥2 − 0.2𝑥3 = 7.85

2 0.1𝑥1 + 7𝑥2 − 0.3𝑥3 = −19.3

3 0.3𝑥1 − 0.2𝑥2 + 10𝑥3 = 71.4



▪ Forward elimination
• eliminate 𝑥1 from eqs. (2) and (3) by using eq. (1) as the pivot

• eliminate 𝑥2 from eq. (3) by using eq. (2′) as the pivot
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Naïve Gauss elimination

2′ 0𝑥1 + 7.0033𝑥2 − 0.2933𝑥3 = −19.5617

3′ 0𝑥1 − 0.19𝑥2 + 10.02𝑥3 = 70.615

1 3𝑥1 − 0.1𝑥2 − 0.2𝑥3 = 7.85

3′′ 0𝑥1 + 0𝑥2 + 10.0120𝑥3 = 70.0843

2′ 0𝑥1 + 7.0033𝑥2 − 0.2933𝑥3 = −19.5617

1 3𝑥1 − 0.1𝑥2 − 0.2𝑥3 = 7.85



▪ Back substitution
• find 𝑥3 from eq. (3′′)

• substitute 𝑥3 to eq. (2′) to get 𝑥2

• substitute 𝑥3 and 𝑥2 to eq. (1) to get 𝑥1

N
um

er
ic

al
 M

et
ho

ds

22

ht
tp

s:
//

is
tia

rt
o.

st
af

f.u
gm

.a
c.

id

Naïve Gauss elimination

𝑥3 =
70.0843

10.0120
= 7

𝑥2 =
−19.5617 + 0.2933 7

7.0033
= −2.5

𝑥1 =
7.85 + 0.2 × 7 + 0.1 −2.5

3
= 3



▪ Pitfalls of the naïve Gauss elimination
• it is possible that division by zero can occur during both the forward 

elimination and the back substitution phases
• problem of round-off errors can become particularly important when large 

numbers of equations are to be solved
• this is due to the fact that every result is dependent on previous results
• an error in the early steps will tend to propagate, that is, it will cause errors in 

subsequent steps

• ill-conditioned systems, where small changes in coefficients result in large 
changes in the solution
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Naïve Gauss elimination



▪ Techniques for improving solutions
• determine the largest available coefficient in the column below the pivot 

element
• switch the rows so that the largest element is the pivot element

• ➔ rearranging the equations such that the pivot equation is the one that 
gives the largest pivot coefficient
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Naïve Gauss elimination



▪ Gauss-Jordan method is a variation of Gauss elimination
• when an unknown is eliminated in the Gauss-Jordan method, it is 

eliminated from all other equations rather than just the subsequent ones
• all rows are normalized by dividing them by their pivot elements
• the elimination step results in an identity matrix rather than a triangular 

matrix

▪ Example
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Gauss-Jordan

1 3𝑥1 − 0.1𝑥2 − 0.2𝑥3 = 7.85

2 0.1𝑥1 + 7𝑥2 − 0.3𝑥3 = −19.3

3 0.3𝑥1 − 0.2𝑥2 + 10𝑥3 = 71.4



Gauss-Jordan
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อ
3 −0.1 −0.2

0.1 7 −0.3
0.3 −0.1 10

7.85
−19.3
71.4

อ
Τ3 3 Τ−0.1 3 Τ−0.2 3

0.1 7 −0.3
0.3 −0.1 10

Τ7.85 3
−19.3
71.4

อ
1 −0.0333 −0.0667

0.1 7 −0.3
0.3 −0.1 10

2.6167
−19.3
71.4

อ
1 −0.0333 −0.0667
0 7.0033 −0.2933
0 −0.1900 10.0200

2.6167
−19.5617
70.6150



Gauss-Jordan
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อ
1 −0.0333 −0.0667
0 7.0033 −0.2933
0 −0.1900 10.0200

2.6167
−19.5617
70.6150

อ
1 −0.0333 −0.0667

Τ0 7.0033 Τ7.0033 7.0033 Τ−0.2933 7.0033
0 −0.1900 10.0200

2.6167
Τ−19.5617 7.0033

70.6150

อ
1 −0.0333 −0.0667
0 1 −0.0419
0 −0.1900 10.0200

2.6167
−2.7931
70.6150

อ
1 0 −0.0681
0 1 −0.0419
0 0 10.0120

2.5236
−2.7931
70.0843



Gauss-Jordan
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อ
1 0 −0.0681
0 1 −0.0419
0 0 1

2.5236
−2.7931

7

ቮ
1 0 −0.0681
0 1 −0.0419

Τ0 10.0120 Τ0 10.0120 Τ10.0120 10.0120

2.5236
−2.7931

Τ70.0843 10.0120

อ
1 0 0
0 1 0
0 0 1

3
−2.5

7

𝑥1

𝑥2

𝑥3

=
3

−2.5
7



▪ It has more operations than Gauss elimination by 50%
▪ It has the same pitfalls, i.e.

• division by zero
• large round-off errors
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▪ Gauss elimination → LU decomposition
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LU decomposition

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

⟶

1 0 0
𝑓21 1 0
𝑓31 𝑓32 1

𝑎11 𝑎12 𝑎13

0 𝑎22
′ 𝑎23

′

0 0 𝑎33
′′

𝐿 𝑈𝐴

𝑓21 =
𝑎21

𝑎11
𝑓31 =

𝑎31

𝑎11
𝑓32 =

𝑎32
′

𝑎22
′



LU decomposition
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𝐿 𝑈 = 𝐴

𝐿 𝐷 = 𝐶

𝑈 𝑋 = 𝐷



▪ Steps to obtain 𝑈 following Gauss elimination
• Step 1: forward elimination

• Step 2: forward elimination
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LU decomposition

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

⟶

𝑎11 𝑎12 𝑎13

0 𝑎22
′ 𝑎23

′

0 𝑎32
′ 𝑎33

′

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

⟶

𝑎11 𝑎12 𝑎13

0 𝑎22
′ 𝑎23

′

0 𝑎32
′ 𝑎33

′
⟶

𝑎11 𝑎12 𝑎13

0 𝑎22
′ 𝑎23

′

0 0 𝑎33
′′

𝑈



▪ Example
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LU decomposition

1 3𝑥1 − 0.1𝑥2 − 0.2𝑥3 = 7.85

2 0.1𝑥1 + 7𝑥2 − 0.3𝑥3 = −19.3

3 0.3𝑥1 − 0.2𝑥2 + 10𝑥3 = 71.4

3 −0.1 −0.2
0.1 7 −0.3
0.3 −0.2 10

𝑥1

𝑥2

𝑥3

=
7.85

−19.3
71.4

𝐴 𝑋 𝐶



LU decomposition
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3 −0.1 −0.2
0.1 7 −0.3
0.3 −0.2 10

3 −0.1 −0.2
0 7.0033 −0.2933
0 −0.19 10.0200

𝑈 =
3 −0.1 −0.2
0 7.0033 −0.2933
0 0 10.0120

𝑓21 =
𝑎21

𝑎11
=

0.1

3
= 0.0333

𝑓31 =
𝑎31

𝑎11
=

0.3

3
= 0.1

𝑓32 =
𝑎32

′

𝑎22
′ =

−0.19

7.0033
= −0.0271

𝐿 =
1 0 0

0.0333 1 0
0.1000 = 0.0271 1
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𝐿 𝐷 = 𝐶

1 0 0
0.0333 1 0
0.1000 0.0271 1

𝑑1

𝑑2

𝑑3

=
7.85

−19.3
71.4

𝑑1 = 7.85

0.0333𝑑1 + 𝑑2 = −19.3 ⟺ 𝑑2 = −19.3 − 0.0333 7.85 = −19.5617

0.1𝑑1 + 0.0271𝑑2 + 𝑑3 = 71.4

⟺ 𝑑3 = 71.4 − 0.1 7.85 − 0.0271 −19.5617 = 70.0843
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𝑈 𝑋 = 𝐷

3 −0.1 −0.2
0 7.0033 −0.2933
0 0 10.0120

𝑥1

𝑥2

𝑥3

=
7.85

−19.5617
70.0843

10.0120𝑥3 = 70.0843 ⟺ 𝑥3 =
70.0843

10.0120
= 7

7.0033𝑥2 − 0.2933𝑥3 = −19.5617 ⟺ 𝑥2 =
−19.5617 + 0.2933 7

7.0033
= −2.5

3𝑥1 − 0.1𝑥2 − 0.2𝑥3 = 7.85

⟺ 𝑥1 =
7.85 + 0.1 −2.5 + 0.2 7

3
= 3

𝑋 =
3

−2.5
7



The matrix inverse
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อ
1 0 0
0 1 0
0 0 1

𝑎11
−1 𝑎12

−1 𝑎13
−1

𝑎21
−1 𝑎22

−1 𝑎23
−1

𝑎31
−1 𝑎32

−1 𝑎33
−1

อ

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

1 0 0
0 1 0
0 0 1

𝐴 ∙ 𝑋 = 𝐶 ⟹ 𝑋 = 𝐴 −1 ∙ 𝐶



▪ Example
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The matrix inverse

1 3𝑥1 − 0.1𝑥2 − 0.2𝑥3 = 7.85

2 0.1𝑥1 + 7𝑥2 − 0.3𝑥3 = −19.3

3 0.3𝑥1 − 0.2𝑥2 + 10𝑥3 = 71.4

3 −0.1 −0.2
0.1 7 −0.3
0.3 −0.2 10

𝑥1

𝑥2

𝑥3

=
7.85

−19.3
71.4

𝐴 𝑋 𝐶



The matrix inverse
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𝐴 = อ
3 −0.1 −0.2

0.1 7 −0.3
0.3 −0.2 10

1 0 0
0 1 0
0 0 1

𝐴 = อ
1 −0.0333 −0.0667

0.1 7 −0.3
0.3 −0.2 10

0.3333 0 0
0 1 0
0 0 1

𝐴 = อ
1 −0.0333 −0.0667
0 7.0033 −0.2933
0 −0.1900 10.0200

0.3333 0 0
−0.0333 1 0
−0.0999 0 1



The matrix inverse
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𝐴 = อ
1 −0.0333 −0.0667
0 1 −0.0417
0 −0.1900 10.0200

0.3333 0 0
−0.0047 0.1422 0
−0.0999 0 1

𝐴 = อ
1 0 −0.0681
0 1 −0.0417
0 0 10.0121

0.3318 0.0047 0
−0.0047 0.1422 0
−0.1009 0.0270 1



The matrix inverse
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𝐴 = อ
1 0 −0.0681
0 1 −0.0417
0 0 1

0.3318 0.0047 0
−0.0047 0.1422 0
−0.0101 0.0027 0.0999

𝐴 = อ
1 0 0
0 1 0
0 0 1

0.3325 0.0049 0.0068
−0.0052 0.1423 0.0042
−0.0101 0.0027 0.0999

𝐴 −1



The matrix inverse
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𝑋 = 𝐴 −1 𝐶

𝑥1

𝑥2

𝑥3

=
0.3325 0.0049 0.0068

−0.0052 0.1423 0.0042
−0.0101 0.0027 0.0999

7.85
−19.3
71.4

𝑥1

𝑥2

𝑥3

=
3.0004

−2.4881
7.0002



▪ Pitfalls
• The matrix inverse may not exist

▪ MS Excel
• =MINVERSE() cntrl+shift+enter
• =MMULT() cntrl+shift+enter
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Jacobi
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𝑥1 =
𝑐1 − 𝑎12𝑥2 − 𝑎13𝑥3

𝑎11

𝑥2 =
𝑐2 − 𝑎21𝑥1 − 𝑎23𝑥3

𝑎22

𝑥3 =
𝑐3 − 𝑎31𝑥1 − 𝑎32𝑥2

𝑎33

initial guesses, 
e.g. xi

0 = 0
continue the 
iteration until
 xi

n+1  xi
n, xi

𝑥1
1 =

𝑐1 − 𝑎12𝑥2
0 − 𝑎13𝑥3

0

𝑎11

𝑥2
1 =

𝑐2 − 𝑎21𝑥1
0 − 𝑎23𝑥3

0

𝑎22

𝑥3
1 =

𝑐3 − 𝑎31𝑥1
0 − 𝑎32𝑥2

0

𝑎33

𝑥1
𝑛+1 =

𝑐1 − 𝑎12𝑥2
𝑛 − 𝑎13𝑥3

𝑛

𝑎11

𝑥2
𝑛+1 =

𝑐2 − 𝑎21𝑥1
𝑛 − 𝑎23𝑥3

𝑛

𝑎22

𝑥3
𝑛+1 =

𝑐3 − 𝑎31𝑥1
𝑛 − 𝑎32𝑥2

𝑛

𝑎33

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑐1

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑐2

𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑐3

𝑥1
0 = 0

𝑥2
0 = 0

𝑥3
0 = 0



▪ Example
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Jacobi

1 3𝑥1 − 0.1𝑥2 − 0.2𝑥3 = 7.85

2 0.1𝑥1 + 7𝑥2 − 0.3𝑥3 = −19.3

3 0.3𝑥1 − 0.2𝑥2 + 10𝑥3 = 71.4



𝒏 𝒙𝟏
𝒏 𝒙𝟐

𝒏 𝒙𝟑
𝒏 𝚫𝐱 𝒎𝒂𝒙

0 0 0 0

1 2.616667 -2.75714 7.14 7.14

2 3.000762 -2.48852 7.006357 0.3840952

3 3.000806 -2.49974 7.000207 0.0112146

4 3.000022 -2.5 6.999981 0.0007839

5 2.999999 -2.5 6.999999 2.385E-05
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Gauss-Seidel
N

um
er

ic
al

 M
et

ho
ds

ht
tp

s:
//

is
tia

rt
o.

st
af

f.u
gm

.a
c.

id

47

continue the 
iteration until
 𝑥𝑖

𝑛+1 ≈ 𝑥𝑖
𝑛, ∀𝑥𝑖

𝑥1
1 =

𝑐1 − 𝑎12𝑥2
0 − 𝑎13𝑥3

0

𝑎11

𝑥2
1 =

𝑐2 − 𝑎21𝑥1
0 − 𝑎23𝑥3

0

𝑎22

𝑥3
1 =

𝑐1 − 𝑎31𝑥1
0 − 𝑎32𝑥2

0

𝑎33

𝑥1
𝑛+1 =

𝑐1 − 𝑎12𝑥2
𝑛 − 𝑎13𝑥3

𝑛

𝑎11

𝑥2
𝑛+1 =

𝑐2 − 𝑎21𝑥1
𝑛+1 − 𝑎23𝑥3

𝑛

𝑎22

𝑥3
𝑛+1 =

𝑐1 − 𝑎31𝑥1
𝑛+1 − 𝑎32𝑥2

𝑛+1

𝑎33



▪ Example
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Gauss-Seidel

1 3𝑥1 − 0.1𝑥2 − 0.2𝑥3 = 7.85

2 0.1𝑥1 + 7𝑥2 − 0.3𝑥3 = −19.3

3 0.3𝑥1 − 0.2𝑥2 + 10𝑥3 = 71.4



𝒏 𝒙𝟏
𝒏 𝒙𝟐

𝒏 𝒙𝟑
𝒏 𝚫𝐱 𝒎𝒂𝒙

0 0 0 0

1 2.616667 -2.79452 7.00561 7.0056095

2 2.990557 -2.49962 7.000291 0.3738898

3 3.000032 -2.49999 6.999999 0.0094754

4 3 -2.5 7 3.155E-05

5 3 -2.5 7 3.544E-07
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Successive over-relaxation
N

um
er

ic
al

 M
et

ho
ds

ht
tp

s:
//

is
tia

rt
o.

st
af

f.u
gm

.a
c.

id

50

𝑥2
𝑛+1 =

𝑐2 − 𝑎21 𝜆𝑥1
𝑛+1 + 1 − 𝜆 𝑥1

𝑛 − 𝑎23𝑥3
𝑛

𝑎22

𝑥3
𝑛+1 =

𝑐3 − 𝑎31 𝜆𝑥1
𝑛+1 + 1 − 𝜆 𝑥1

𝑛 − 𝑎32 𝜆𝑥2
𝑛+1 + 1 − 𝜆 𝑥2

𝑛

𝑎33

𝑥1
𝑛+1 =

𝑐1 − 𝑎12𝑥2
𝑛 − 𝑎13𝑥3

𝑛

𝑎11

𝜆𝑥𝑖
𝑛+1 + 1 − 𝜆 𝑥𝑖

𝑛
0 < 𝜆 < 1

1 < 𝜆 < 2

under-relaxation

over-relaxation



▪ Example
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Successive over-/under-relaxation

1 3𝑥1 − 0.1𝑥2 − 0.2𝑥3 = 7.85

2 0.1𝑥1 + 7𝑥2 − 0.3𝑥3 = −19.3

3 0.3𝑥1 − 0.2𝑥2 + 10𝑥3 = 71.4



𝒏 𝒙𝟏
𝒏 𝒙𝟐

𝒏 𝒙𝟑
𝒏 𝚫𝐱 𝒎𝒂𝒙

0 0 0 0

1 2.616667 -2.81321 6.937854 6.93785357

2 2.985416 -2.50509 6.997886 0.36874976

3 2.999689 -2.50019 6.99984 0.01427299

4 2.999983 -2.50001 6.999998 0.00029368

5 3 -2.5 7 1.6465E-05
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Successive over-/under-relaxation
𝜆 = 1.5



Numerical Methods
Linear Algebraic Equations
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