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Curve fitting
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▪ Reference
• Chapra, S.C., Canale, R.P., 2015, Numerical 

Methods for Engineers, 7th Ed., McGraw-Hill 
Book Co., New York
• Part Five: Chapters 17 to 20 (pp 441 to 585)



Curve fitting
▪ A line or curve that represents a number of data points
▪ There are two methods to find such line or curve

• Regression
• Interpolation

▪ Engineering applications
• Trend analysis
• Hypothesis testing
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Regression Interpolation
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The data show significant errors or 
noise

To find a single curve that represents 
general trend of the data

Regression line (curve) does not 
need to pass every data point

The data are accurate

To find a curve or curves that 
encompass(es) every data point

To estimate values between data 
points

Regression vs interpolation



Regression and interpolation
▪ Extrapolation

• Similar to interpolation but applied to outside range of data points
• Not recommendedN
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Curve fitting to measured data
▪ Trend analysis

• Use of data trend (measurements, experiments) to estimate values
• If the data are accurate, use interpolation technique
• If the data show noise, use regression technique

▪ Hypothesis testing
• Comparison between theoretical values with computed ones
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Recall on statistical parameters

▪ Arithmetic mean

▪ Standard deviation

▪ Variance

▪ Coefficient of variation

re
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ത𝑌 =
1

𝑛
෍ 𝑦𝑖

𝑆𝑡 = ෍ 𝑦𝑖 − ത𝑌 2𝑠𝑌 =
𝑆𝑡

𝑛 − 1

𝑠𝑌
2 =

𝑆𝑡

𝑛 − 1

𝑐𝑣 =
𝑠𝑌

ത𝑌
100%



Probability distribution

X

freq

Normal Distribution
one of data distributions 
that is frequently 
encountered in engineering
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Simple Linear 
Regression

RegressionN
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Regression: least-square method
▪ To find a single curve or function (approximate) that represents the 

general trend of the data
• The data show significant error
• The curve does not need to pass every data point

▪ Methods
• Linear regression (simple linear regression)
• Linearized expressions
• Polynomial regression
• Multiple linear regression
• Non-linear regression
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Regression: least-square method
▪ How

• Spreadsheet (Microsoft Excel)
• Computer program

• MatLab

• Freeware
• Octave
• Scilab
• Freemat

• Self-made computer program
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Simple linear regression
▪ To find a straight line that represents the general trend of data points: 

(x0,y0), (x1,y1), …, (xn,yn)
• 𝑦𝑟𝑒𝑔 = 𝑎0 + 𝑎1𝑥

• 𝑎0 intercept
• 𝑎1 slope

▪ Microsoft Excel
• =INTERCEPT(y,x)
• =SLOPE(y,x)
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Simple Linear Regression
▪ Error or residual

• Discrepancies between actual value of 𝑦 (𝑦 data) and approximate value 
of 𝑦 (𝑦𝑟𝑒𝑔) according to linear expression 𝑎0 + 𝑎1𝑥

• Minimize the sum of squared residues
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𝑒 = 𝑦 − 𝑦𝑟𝑒𝑔 = 𝑦 − 𝑎0 + 𝑎1𝑥

min 𝑆𝑟 = min ෍ 𝑒𝑖
2 = min ෍ 𝑦 − 𝑎0 − 𝑎1𝑥 2



Simple linear regression
▪ How to find 𝑎0 and 𝑎1?

• Differentiate the equation 
of 𝑆𝑟  twice; firstly with 
respect to 𝑎0 and lastly 
with respect to 𝑎1

• Set each of the two 
equations to zero

• Solve the equations for 𝑎0 
and 𝑎1
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𝜕𝑆𝑟

𝜕𝑎0
= −2 ෍ 𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖

𝜕𝑆𝑟

𝜕𝑎1
= −2 ෍ 𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 𝑥𝑖

𝑎1 =
𝑛 σ 𝑥𝑖𝑦𝑖 − σ 𝑥𝑖 σ 𝑦𝑖

𝑛 σ 𝑥𝑖
2 − σ 𝑥𝑖

2

𝑎0 = ത𝑦 − 𝑎1 ҧ𝑥

𝜕𝑆𝑟

𝜕𝑎0
= 0

𝜕𝑆𝑟

𝜕𝑎1
= 0



Example #1

i xi yi = f(xi)
0 1 0.5
1 2 2.5
2 3 2
3 4 4
4 5 3.5
5 6 6
6 7 5.5

0

1
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3

4

5

6

7

0 1 2 3 4 5 6 7

y 
= 

f(
x)

x
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Example #1

i xi yi xi yi xi
2 yreg (yi−yreg)2 (yi−ymean)2

0 1 0.5 0.5 1 0.910714 0.168686 8.576531

1 2 2.5 5 4 1.75 0.5625 0.862245

2 3 2.0 6 9 2.589286 0.347258 2.040816

3 4 4.0 16 16 3.428571 0.326531 0.326531

4 5 3.5 17.5 25 4.267857 0.589605 0.005102

5 6 6.0 36 36 5.107143 0.797194 6.612245

6 7 5.5 38.5 49 5.946429 0.199298 4.290816

∑ 28 24.0 119.5 140 ∑ 2.991071 22.71429
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Example #1
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𝑎1 =
𝑛 σ 𝑥𝑖𝑦𝑖 − σ 𝑥𝑖 σ 𝑦𝑖

𝑛 σ 𝑥𝑖
2 − σ 𝑥𝑖

2 =
7 119.5 − 28 24

7 140 − 28 2 = 0.839286

ത𝑦 =
24

7
= 3.4

ҧ𝑥 =
28

7
= 4

𝑎0 = ത𝑦 − 𝑎1 ҧ𝑥 = 3.4 − 0.839286 4 = 0.071429



Example #1

0
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data regression
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Error
▪ Error

• Standard error magnitude

• Notice its similarity with standard deviation
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𝑆𝑡 = ෍ 𝑦𝑖 − ത𝑦 2𝑠𝑦 =
𝑆𝑡

𝑛 − 1

𝑆𝑟 = ෍ 𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖
2𝑠𝑦/𝑥 =

𝑆𝑟

𝑛 − 2



Error
▪ Diffrence between the two “errors” signifies an improvement of the 

prediction or a reduction of error

coefficient of determination

correlation coefficient
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−1 ≤ r ≤ +1

𝑟2 =
𝑆𝑡 − 𝑆𝑟

𝑆𝑡

𝑟 =
𝑛 σ 𝑥𝑖𝑦𝑖 − σ 𝑥𝑖 σ 𝑦𝑖

𝑛 σ 𝑥𝑖
2 − σ 𝑥𝑖

2 𝑛 σ 𝑦𝑖
2 − σ 𝑦𝑖

2



Error
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−1 ≤ r ≤ +1

𝑆𝑟 = ෍ 𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖
2 = 2.991071

𝑆𝑡 = ෍ 𝑦𝑖 − ത𝑦 2 = 22.71429

𝑟2 =
𝑆𝑡 − 𝑆𝑟

𝑆𝑡
=

22.71429 − 2.991071

22.71429
= 0.868318

𝑟 = 0.931836



Example #2

i xi yi = f(xi)
0 1 5.5
1 2 6
2 3 3.5
3 4 4
4 5 2
5 6 2.5
6 7 0.5

0
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7

0 1 2 3 4 5 6 7

y 
= 

f(
x)

x
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Polynomial 
Regression

RegressionN
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Polynomial regression
▪ Some engineering data, although exhibiting a marked pattern, is poorly 

represented by a straight line
• Method 1: coordinate transformation (linearized non-linear eq.)
• Method 2: polynomial regression

• The mth-degree polynomial

• The sum of the squares of the residuals
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𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑚𝑥𝑚

𝑆𝑟 = ෍

𝑖=1

𝑛

𝑒𝑖
2 = ෍

𝑖=1

𝑛

𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖
2 − ⋯ − 𝑎𝑚𝑥𝑖

𝑚 2



Polynomial regression
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▪ The least-square method 
extended to fit the data to an 
mth-degree polynomial

▪ These equations can be set 
equal to zero and rearranged 
to develop a set of normal 
equations

𝜕𝑆𝑟

𝜕𝑎0
= −2 ෍ 𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖

2 − ⋯ − 𝑎𝑚𝑥𝑖
𝑚

𝜕𝑆𝑟

𝜕𝑎1
= −2 ෍ 𝑥𝑖 𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖

2 − ⋯ − 𝑎𝑚𝑥𝑖
𝑚

𝜕𝑆𝑟

𝜕𝑎2
= −2 ෍ 𝑥𝑖

2 𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖
2 − ⋯ − 𝑎𝑚𝑥𝑖

𝑚

𝜕𝑆𝑟

𝜕𝑎𝑚
= −2 ෍ 𝑥𝑖

𝑚 𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖
2 − ⋯ − 𝑎𝑚𝑥𝑖

𝑚

∙
∙
∙



Polynomial regression
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▪ There are 𝑚 + 1 
linear equations 
having 𝑚 + 1 
unknowns, i.e. 
𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑚

▪ These linear 
equations can be 
simultaneously 
solved by using 
methods such as
• Gauss 

elimination
• Gauss-Jordan
• Jacobi iteration
• Matrix inversion

𝑎0𝑛 + 𝑎1 ෍

𝑖−1

𝑛

𝑥𝑖 + 𝑎2 ෍

𝑖=1

𝑛

𝑥𝑖
2 + ⋯ + 𝑎𝑚 ෍

𝑖=1

𝑛

𝑥𝑖
𝑚 = ෍

𝑖=1

𝑛

𝑦𝑖

𝑎0 ෍

𝑖−1

𝑛

𝑥𝑖 + 𝑎1 ෍

𝑖=1

𝑛

𝑥𝑖
2 + 𝑎2 ෍

𝑖=1

𝑛

𝑥𝑖
3 + ⋯ + 𝑎𝑚 ෍

𝑖=1

𝑛

𝑥𝑖
𝑚+1 = ෍

𝑖=1

𝑛

𝑥𝑖𝑦𝑖

𝑎0 ෍

𝑖=1

𝑛

𝑥𝑖
2 + 𝑎1 ෍

𝑖=1

𝑛

𝑥𝑖
3 + 𝑎2 ෍

𝑖=1

𝑛

𝑥𝑖
4 + ⋯ + 𝑎𝑚 ෍

𝑖=1

𝑛

𝑥𝑖
𝑚+2 = ෍

𝑖=1

𝑛

𝑥𝑖
2𝑦𝑖

𝑎0 ෍

𝑖=1

𝑛

𝑥𝑖
𝑚 + 𝑎1 ෍

𝑖=1

𝑛

𝑥𝑖
𝑚+1 + 𝑎2 ෍

𝑖=1

𝑛

𝑥𝑖
𝑚+2 + ⋯ + 𝑎𝑚 ෍

𝑖=1

𝑛

𝑥𝑖
2𝑚 = ෍

𝑖=1

𝑛

𝑥𝑖
𝑚𝑦𝑖

∙
∙
∙



Example
▪ Fit a second-order polynomial to 

the data in the table on the right

▪ Answer

xi yi

0 2.1

1 7.7

2 13.6

3 27.2

4 40.9

5 61.1
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𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2

𝑦 = 2.47857 + 2.35929𝑥 + 1.86071𝑥2

𝑟2 = 1 −
𝑆𝑟

𝑆𝑡
= 1 −

3.74657

2513.39
= 0.9985

𝑟 = 0.9993
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Linear Regression
▪ Linearized non-linear equations

• Logarithmic eq. → linear eq.
• Exponential eq. → linear eq.
• n-th order polynomial eq. (n > 1) → linear eq.
• etc.
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Linear Regression

x

y ln y

1

x
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𝑦 = 𝑎1𝑒𝑏1𝑥

ln 𝑦 = ln 𝑎1 + 𝑏1𝑥

ln 𝑎1

𝑏1



Linear Regression

1

x

y

b
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log 𝑎2

log 𝑦

log 𝑥

b2

log 𝑦 = log 𝑎2 + 𝑏2 log 𝑥

𝑦 = 𝑎2𝑥𝑏2



Linear Regression

1
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1/y

1/x

𝑦 = 𝑎3

𝑥

𝑏3 + 𝑥

1

𝑦
=

𝑏3 + 𝑥

𝑎3𝑥
=

1

𝑎3
+

𝑏3

𝑎3

1

𝑥

Τ1 𝑎3

Τ𝑏3 𝑎3

x

y



Multiple Linear 
Regression

RegressionN
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Multiple linear regression
▪ Suppose the dependent variable 𝑦 is a linear function of two 

independent variables 𝑥1 and 𝑥2

• The best values of the coefficients are determined by setting up the sum of 
the squares of the residuals
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𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2

𝑆𝑟 = ෍

𝑖=1

𝑛

𝑦𝑖 − 𝑎01𝑎1𝑥1𝑖 − 𝑎2𝑥2𝑖
2



▪ Differentiating this equation with respect to each of the unknown 
coefficients
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Multiple linear regression

𝜕𝑆𝑟

𝜕𝑎0
= −2 ෍

𝑖=1

𝑛

𝑦𝑖 − 𝑎0 − 𝑎1𝑥1𝑖 − 𝑎2𝑥2𝑖

𝜕𝑆𝑟

𝜕𝑎1
= −2 ෍

𝑖=1

𝑛

𝑥1𝑖 𝑦𝑖 − 𝑎0 − 𝑎1𝑥1𝑖 − 𝑎2𝑥2𝑖

𝜕𝑆𝑟

𝜕𝑎2
= −2 ෍

𝑖=1

𝑛

𝑥2𝑖 𝑦𝑖 − 𝑎0 − 𝑎1𝑥1𝑖 − 𝑎2𝑥2𝑖



▪ Equating the differentials to zero and expressing the resulted equation 
as a set of simultaneous linear equations yield
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Multiple linear regression

𝑎0𝑛 + 𝑎1 ෍

𝑖=1

𝑛

𝑥1𝑖 + 𝑎2 ෍

𝑖=1

𝑛

𝑥2𝑖 = ෍

𝑖=1

𝑛

𝑦𝑖

𝑎0 ෍

𝑖=1

𝑛

𝑥1𝑖 + 𝑎1 ෍

𝑖=1

𝑛

𝑥1𝑖
2 + 𝑎2 ෍

𝑖=1

𝑛

𝑥1𝑖𝑥2𝑖 = ෍

𝑖=1

𝑛

𝑥1𝑖𝑦𝑖

𝑎0 ෍

𝑖=1

𝑛

𝑥2𝑖 + 𝑎1 ෍

𝑖=1

𝑛

𝑥1𝑖𝑥2𝑖 + 𝑎2 ෍

𝑖=1

𝑛

𝑥2𝑖
2 = ෍

𝑖=1

𝑛

𝑥2𝑖𝑦𝑖



▪ Written in matrix form
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Multiple linear regression

𝑛 ෍

𝑖=1

𝑛

𝑥1𝑖 ෍

𝑖=1

𝑛

𝑥2𝑖

෍

𝑖=1

𝑛

𝑥1𝑖 ෍

𝑖=1

𝑛

𝑥1𝑖
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𝑖=1

𝑛

𝑥1𝑖𝑥2𝑖

෍
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𝑖=1

𝑛

𝑥2𝑖
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𝑎0

𝑎1

𝑎2

=

෍

𝑖=1

𝑛

𝑦𝑖

෍

𝑖=1

𝑛

𝑥1𝑖𝑦𝑖

෍

𝑖=1

𝑛

𝑥2𝑖𝑦𝑖



Example
▪ Find the best linear equation 

that fits to the data in the table 
on the right

▪ Answer

x1 x2 y

0 0 5

2 1 10

2.5 2 9

1 3 0

4 6 3

7 2 27
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𝑦 = 5 + 4𝑥1 − 3𝑥2

𝑟2 = 1



Multiple linear regression
▪ Multiple linear regression can be useful in the derivation of power 

equations of the general form

• Such equations are extremely useful when fitting experimental data
• In order to use the multiple linear regression, the equation is transformed 

by taking its logarithm to yield

N
um

er
ic

al
 M

et
ho

ds
ht

tp
s:

//
is

tia
rt

o.
st

af
f.u

gm
.a

c.
id

39

𝑦 = 𝑎0𝑥1
𝑎1𝑥2

𝑎2 … 𝑥𝑚
𝑎𝑚

log 𝑦 = log 𝑎0 + 𝑎1 log 𝑥1 + 𝑎2 log 𝑥2 + ⋯ + 𝑎𝑚 log 𝑥𝑚

⟹ 𝑦′ = 𝑎0
′ + 𝑎1

′𝑥1
′ + 𝑎2

′𝑥2
′ + ⋯ + 𝑎𝑚

′𝑥𝑚
′
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General Linear 
Least Squares

RegressionN
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▪ The three types of regression that have been presented, i.e. simple linear, 
polynomial, and multiple linear can be expressed in a general least-squares 
model

• where 𝑧0, 𝑧1, … , 𝑧𝑚 are 𝑚 + 1 different functions
• 𝑚 + 1 is the number of independent variables
• 𝑛 + 1 is the number of data points

▪ A special case is when 𝑧0 = 1 
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General linear least squares

𝑦 = 𝑎0𝑧0 + 𝑎1𝑧1 + 𝑎2𝑧2 + ⋯ + 𝑎𝑚𝑧𝑚

⟹ 𝑦 = 𝑎0 + 𝑎1𝑧1 + 𝑎2𝑧2 + ⋯ + 𝑎𝑚𝑧𝑚



▪ The previous expression can be written in a matrix form 
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General linear least squares

𝑌 = 𝑍 𝐴



General linear least squares
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𝑌 = 𝑍 𝐴 𝑍 𝑇 𝑍 𝐴 = 𝑍 𝑇 𝑌

𝑍 =

𝑎01 𝑎11 ∙ ∙ ∙ 𝑎𝑚1

𝑎02 𝑎12 ∙ ∙ ∙ 𝑎𝑚2

∙ ∙ ∙
∙ ∙ ∙
∙ ∙ ∙

𝑎0𝑛 𝑎1𝑛 ∙ ∙ ∙ 𝑎𝑚𝑛

𝑆𝑟 = ෍

𝑖=1

𝑛

𝑦𝑖 − ෍

𝑗=1

𝑚

𝑎𝑗𝑧𝑗𝑖

2

▪ 𝑌  contains the observed values of 
the dependent variables

▪ 𝑍  is a matrix of the observed 
values of the independent variables

▪ 𝐴  contains the unknown 
coefficients



▪ Solution strategy
• LU decomposition
• Cholesky’s method
• Matrix inverse approach
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General Linear Least Squares

𝑍 𝑇 𝑍 𝐴 = 𝑍 𝑇 𝑌

𝐴 = 𝑍 𝑇 𝑍
−1

𝑍 𝑇 𝑌



Numerical Methods
Curve Fitting
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