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Numerical Methods

Curve Fitting

Numerical Methods
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Curve fitting

B Reference

= * Chapra, S.C., Canale, R.P., 2015, Numerical
Methods for Engineers, 7th Ed., McGraw-Hill
Book Co., New York

e * Part Five: Chapters 17 to 20 (pp 441 to 585)

Numerical Methods
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Curve fitting

" Aline or curve that represents a number of data points
" There are two methods to find such line or curve

Numerical Methods

* Regression
* Interpolation
" Engineering applications
* Trend analysis
* Hypothesis testing
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Numerical Methods
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Regression vs interpolation

Regression Interpolation

The data show significant errors or The data are accurate
noise

To find a curve or curves that
encompass(es) every data point

To find a single curve that represents
general trend of the data

Regression line (curve) does not To estimate values between data
need to pass every data point points




Regression and interpolation

"  Extrapolation
* Similarto interpolation but applied to outside range of data points

Numerical Methods

* Notrecommended
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Curve fitting to measured data

" Trend analysis

* Use of data trend (measurements, experiments) to estimate values
e Ifthe data are accurate, use interpolation technique

Numerical Methods

e Ifthe data show noise, use regression technique

" Hypothesis testing
* Comparison between theoretical values with computed ones
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Recall on statistical parameters

Numerical Methods

. R _ 1

- " Arithmetic mean —> yzazyi

S

3
L E o s, . N
il 2 ® Standard deviation > s = = So=y =)
3 o
N ©
E . s
4 5 " Variance > st=—
< o
i S
4 ©

. . 4 S
" Coefficient of variation |:> c,,=7y100%
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Probability distribution

Numerical Methods

frqu

Normal Distribution
one of data distributions
that is frequently
encountered in engineering
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Regression

Simple Linear
Regression




Regression: least-square method

" To find a single curve or function (approximate) that represents the
general trend of the data

* The data show significant error

Numerical Methods

* The curve does not need to pass every data point

" Methods
* Linearregression (simple linear regression)
* Linearized expressions
* Polynomialregression
* Multiple linear regression

°
o
&
S
oD
>

o

=
@

&
%
o
9
o
@

o

17

<

o3
(2]}
o)
&
=

=

* Non-linear regression

RN
o




Regression: least-square method

" How
* Spreadsheet (Microsoft Excel)

Numerical Methods

* Computer program
 MatlLab
* Freeware

e QOctave
 Scilab
* Freemat

* Self-made computer program
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Simple linear regression

" To find a straight line that represents the general trend of data points:

(Xo,yo), (X‘|’y1)’ eeey (Xn’yn)
®* Yreg = Qo + a1X

Numerical Methods

* agintercept
* a4 slope
" Microsoft Excel
* =INTERCEPT(y,x)
* =SLOPE(y,x)
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Simple Linear Regression

®  Error orresidual

* Discrepancies between actual value of y (y data) and approximate value
of y (Vreg) according to linear expression (ag + a;x)

Numerical Methods

e:y_yreg:y_(ao‘l'alx)

* Minimize the sum of squared residues

min[S, ] = min [Z el-z] = min Z(y — Qg — alx)zl
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Numerical Methods
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Simple linear regression

" Howtofindayanda,?

Differentiate the equation
of S,- twice; firstly with
respect to ay and lastly
with respect to a,

Set each of the two
equations to zero

Solve the equations for a
and a4

as, as,

dag day

CNYLX Y — NX LY
T Y - (T x)?

a0=}_/—a1f
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Numerical Methods
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Example #1

Yreg ViVreg)®  (ViYmean)’
0 1 0.5 0.5 1 0.910714 0.168686 8.576531
1 2 2.5 5 4 1.75 0.5625 0.862245
2 3 2.0 6 9 2.589286 0.347258 2.040816
3 4 4.0 16 16 3.428571 0.326531 0.326531
4 5 3.5 17.5 25 4.267857 0.589605 0.005102
5 6 6.0 36 36 5.107143 0.797194 6.612245
6 7 5.5 38.5 49 5.946429 0.199298 4.290816
2 28 24.0 119.5 140 )3 2.991071 22.71429




Example #1

onXxy;—Xx Ly, 7(119.5) — 28(24)

N X Z—(x)? | 7(140) — (287 (837480

%)
o)
o
<
=
5]
b
©
3]
‘=
5]
=
S
Z

24

E y=— =34

: 7

= _28_,

1 7

4, =7 - a,% = 3.4 — 0.839286(4) = 0.071429
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O data e==regression
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2 3
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Example #1
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Error

" Error
* Standard error magnitude

Numerical Methods

Sy = z()’i —ag — aix;)*

* Notice its similarity with standard deviation

Se= ) i =92
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Error

Z

o

g "  Diffrence between the two “errors” signifies an improvement of the

% prediction or a reduction of error

£

Z

2 St S'r . . . o
ré = S > coefficient of determination
t

. nYyxy; — (Xx)Xy;)
JnYx2 — Cx)2/nYy2 — Cyi)?

correlation coefficient

. -1<r<+1
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S, = Z(y,; —ay — a;x;)? = 2.991071

%)
o)
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©
3]
‘=
5]
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S
Z

S, = Z(yi — )2 = 22.71429

,  S¢—S, 2271429 — 2991071 0.868318
S = = = ().

: TS, 22.71429

: r = 0.931836
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f(x;)

5.5
3.5
2.5
0.5

Yi

Example #2
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Regression

Polynomial
Regression




Polynomial regression

®  Some engineering data, although exhibiting a marked pattern, is poorly
represented by a straight line

* Method 1: coordinate transformation (linearized non-linear eq.)

Numerical Methods

* Method 2: polynomial regression
* The mth-degree polynomial

Yy =ag+ a1 x + azx® + -+ apx™

 The sum of the squares of the residuals

n
2
— 2 2 m
Sy = E e;” = E (}’i—ao—a1xi—azxi — = Ay X; )
1 =1

n
=1 1=
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Polynomial regression

B
2
(]
=
S "  The least-square method Z m
5 — Ay — A1 X; — AxX7 — ** — A X]
£ extended to fit the data to an aao (i = a0 — arxi — a; mxl")
=)
< mth-degree polynomial
. e — — 2 — 0 0 m
" These equations can be set 6a1 = —2 z xl(yl — 1X; — AxX; AmX; )
S equal to zero and rearranged
@©
£ to develop a set of normal
% — _ 2 . 2 _ ... m
2 equations aa 2 Z F (i — a0 — arx; — ayx] apx]")
& 2
S
ks
H
2
ro_ 2
F— —sz{n(yi — ag — a1 x; — azx? — - — apx™)
am

AS)




Numerical Methods
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Polynomial regression

n n n n
a0n+alzxi+a22xi2+---+am2xim=Zyi -
i—1 i=1 i=1 i=1

n n n n n
aOin+a1 E xl-2+a22xi3+-~-+am x; Mt = E X; Vi

i—1 i=1 i=1 i=1 i=1

n n n n n "
a, E x;2 + aq E x;3 + a, E x;*+ -+ ay, E x; 12 = E x;2y;

i=1 i=1 i=1 i=1 i=1

n

n n n n
a, z x;™+ ay z x;"t + a, Z x;"2 + o+ a, z x; 2™ = z x;™y;

i=1 i=

Therearem + 1
linear equations
havingm + 1
unknowns, i.e.
g, A1, A, ..., Ay

These linear
equations can be
simultaneously
solved by using
methods such as

* Gauss

elimination

®* Gauss-Jordan

* Jacobiiteration

* Matrix inversion



4 Example
s
g ® Fita second-order polynomialto X; Yi
GE; the data in the table on the right 0 2.1
y =ay+ a;x + a,x? 1 7.7
E 2 13.6
£ ®  Answer
E 3 27.2
‘§ y = 2.47857 + 2.35929x + 1.86071x? 4 40.9
2 s 3.74657 5 61.1
S 2=1-—=1-———=10.9985
2 r S, 2513.39
r = 0.9993

27




Regression

Regression of
Linearized
Expression




Linear Regression

" Linearized non-linear equations
* Logarithmic eq. =2 linear eq.

Numerical Methods

* Exponential eq. =2 linear eq.
* n-th order polynomialeq. (n > 1) =2 linear eq.
* etc.
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Numerical Methods
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Linear Regression

y /

y = a,ebr* »

XV

lny4

In a4

Iny =Ina; + b1x

X W



Linear Regression

y A log y4 logy =loga, + b, logx

b
Yy = a,x"’2 jl>
b,

Numerical Methods

loglx

X
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Numerical Methods
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Linear Regression

y/

X W

1/y /

1/a3

1 b3 + x 1 N b3 1
\ _= - —
y asx as as x
bs/as
1
1/x



Regression

Multiple Linear
Regression




Multiple linear regression

" Suppose the dependent variable y is a linear function of two
independent variables x; and x,

Numerical Methods

y=ay+a;x; +ayx,

* The bestvalues of the coefficients are determined by setting up the sum of
the squares of the residuals

n
_ 2
Sr = Z(J’i —apglayxq; — azle-)
i=1
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Multiple linear regression

g " Differentiating this equation with respect to each of the unknown
S coefficients
£ n
3 as,
P = —2 Z(}’i — ap — A1Xq; — AzX3;)

Ao :
ke i=1
S n
g dS,
£ P —2 Z x1;(Vi — ap — a1Xx1; — AzXxy;)
g aq .
g =1
: as <
3 5 - = —22 x2i (Y — Qg — A1Xq; — AzX3;)
2 a —
< 1=

35




Multiple linear regression

" Equating the differentials to zero and expressing the resulted equation
as a set of simultaneous linear equations yield

n n n
apgn + allei + azzxZi = Z)’i
1 i=1 i=1

i=

Numerical Methods

n n n n

2 _
A Z X1; +aq 2 X1;° + ap 2 X1iX2i = z X1iYi

i=1 i=1 = =1

1
n n n

E E 2 _

Ay ) Xpit A1 ) Xq1iXy; +Qy z Xpi“ =
1 1 i=1

n
i= i= =

Z X2iYi
1
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Multiple linear regression

® Written in matrix form
B n
‘l’l
Tl
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Numerical Methods
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Example

Find the best linear equation
that fits to the data in the table
on the right

Answer
y=5+4x; — 3x,

ré=1

0 5
2 1 10
2.5 2 9
3 0
4 6 3
2 27




Multiple linear regression

" Multiple linear regression can be useful in the derivation of power
equations of the general form

Numerical Methods

— a a a
Y = ApXq 1x2 2 e Xm m

* Such equations are extremely useful when fitting experimental data

* |norderto use the multiple linear regression, the equation is transformed
by taking its logarithm to yield

logy =logay + a4 logx; +a,logx, + -+ a,, logx,,
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v BN Regresi|istiarto x B

& G O httpsy/istiarto.staff.ugm.ac.id/index.php/regresi/ A Y) ¥=

l s t I a r t o Departemen Teknik Sipil dan

Lingkungan Fakultas Teknik UGM

Regresi

Regresi Search

[ reglin | regresi linear ganda (multiple linear regression) = [m} X Berita-N
eria-News

File View Help

Computational Fluid Dynamics

Gerusan Lokal di Pilar Jembatan

File
= HEC-RAS
Judul 2 ¥
= Hidraulika
[Ta0=0 y=a0+alxl+a2x2+a3x3+.. R
= Hidrologi

Kuliah-Ujian-Tugas-Praktikum

Transpor Polutan

Hapus | Proses | Keluar |

» Transpor Sedimen

reglin adalah aplikasi untuk melakukan regresi linear variabel ganda (multi variable
linear regression).
y=ao+a1xi1+a2x2+a3x3+..
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Regression

General Linear
Least Squares




General linear least squares

" The three types of regression that have been presented, i.e. simple linear,
polynomial, and multiple linear can be expressed in a general least-squares
model

Numerical Methods

Y =QgZogt+a1z1 + 32y + -+ aQnZy,

* where zy, 74, ..., 2, are m + 1 different functions
* m+ 1listhe number of independent variables
* n+ 1isthe number of data points

" Aspecialcaseiswhenzy, =1
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General linear least squares

" The previous expression can be written in a matrix form

Y} = [Z[{A}

Numerical Methods
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General linear least squares

s

3 {v}=[Z1{4} —) [z]"[z]{4} = [Z]"{Y}

:

- dgy A171 *  +  + am1 " {Y}containsthe observed values of
. Aoy Qq2 ° . © Ao the dependent variables

£ z1=| ' ' = [Z]is a matrix of the observed

= ' ' values of the independent variables
g Aoy, Qin an,l ™ {A}containsthe unknown

2 coefficients

2 2
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Numerical Methods
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General Linear Least Squares

[Z]"[Z]{A} = [Z]"{Y}

" Solution strategy

* LU decomposition
* Cholesky’s method

v

* Matrix inverse approach

4}

[[Z17(Z]]

[Z]"{Y}
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