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▪ Why probability?
• We cannot be sure on the result of an event (for example volcanic 

eruption, earthquake, tsunami) based on previous events 
(historical records)

• Uncertainty or stochastic nature is an inherent characteristics of 
every process in nature
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Delays of bus arrival
Delay (minutes) Frequency Relative frequency Relative frequency

1 2 0.07 7%

2 3 0.10 10%

3 8 0.27 27%

4 4 0.13 13%

5 5 0.17 17%

6 3 0.10 10%

7 2 0.07 7%

8 0 0.00 0%

9 1 0.03 3%

10 2 0.07 7%

∑ 30 1 100%

How long will it 
be the delay of 
the 31st arrival?
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▪ Definition #1
• If a random event can occur in 𝑛 equally likely and mutually exclusive 

ways, and if 𝑛𝑎  of these ways have an attribute 𝐴, then the probability 
of the occurrence of the event having attribute 𝐴 is Τ𝑛𝑎 𝑛 written as

prob 𝐴 = Τ𝑛𝑎 𝑛

• In the above definition, 𝑛 is the set of all possible results (events)
• The above definition is an a priori definition because it assumes that one 

can determine before the fact all of the equally likely and mutually 
exclusive ways that an event can occur and all the ways that an event with 
attribute 𝐴 can occur
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▪ Definition #2
• If a random event occurs a large number of times n and the event has 

attribute 𝐴 in 𝑛𝑎 of these occurrences, then the probability of the 
occurrence of the event having attribute 𝐴 is

prob 𝐴 = lim
𝑛→∞

𝑛𝑎

𝑛

• The above definition allows us to estimate probabilities based on 
observations and does not require that outcomes be equally likely or that 
they all be enumerated
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▪ In definition #2
• The estimates of probability, which are based on observations, are 

empirical and will only stochastically converge to the true probability as 
the number of observations becomes large

• If two independent sets of observations are available (samples), an 
estimate of the probability of the event A could be determined from each 
set of observations
• These two estimates of prob 𝐴  would not necessarily equal to each other nor
• would either estimate necessarily equal the true probability (population) 

prob 𝐴  based on an infinitely large sample

Probability

How many observations are required to produce acceptable estimates 
of the probabilities of events?
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▪ From the two definitions, the probability ranges from 0 to 1
• 0 ≤ prob 𝐴 ≤ 1

• prob 𝐴 = 0 nearly impossible
• prob 𝐴 = 1 almost certain

Range of probability values
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▪ Set and measure
• Consider that an experiment is any process that generates values of 

random variables
• All possible outcomes of an experiment constitutes the sample space
• Any particular point in the sample is a sample point or element
• A collection of elements, known as a set, is an event

• To each element in the sample space, a non-negative weight is 
assigned such that the sum of the weights on all of the element is one
• The magnitude of the weight is proportional to the likelihood that the 

experiment will result in a particular element
• The weight assigned to the elements of the sample space are known as 

probabilities
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Probability and frequency table
Delay (minutes) Frequency Relative frequency Relative frequency

1 2 0.07 7%

2 3 0.10 10%

3 8 0.27 27%

4 4 0.13 13%

5 5 0.17 17%

6 3 0.10 10%

7 2 0.07 7%

8 0 0.00 0%

9 1 0.03 3%

10 2 0.07 7%

∑ 30 1 100%
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Probability and histogram
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Sample space and 
sample elements

ProbabilitySt
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▪ Example #1
• A catchment area has three stations: Sta-1, Sta-2, Sta-3
• An experiment was conducted to decide whether a particular 

station needs a recalibration
• Outcomes of the experiment (y, n, y)

• Sta-1 requires recalibration (y = yes)
• Sta-2 does not require recalibration (n = no)
• Sta-3 requires recalibration (y = yes)

Sample space and sample elements
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Sample space and sample elements
▪ Example #1

• Sample space – Alternative 1
• S1 = {(y, y, y), (y, y, n), (y, n, y), (n, y, y), (y, n, n), (n, y, n), (n, n, y), (n, n, n)}
• S1 is a discrete sample space, i.e. it has a countable number of elements
• If the experiment is carried out once, then the outcome is one of its 

element
• Sample space – Alternative 2

• S2 = {0,1,2,3}
• S2 is a discrete sample space
• We are interested in the number of stations that needs recalibration
• We do not need information on which station that needs recalibration
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▪ Example #2
• Measurement on wind velocity

• speed (km/hour)
• direction (°)

• Outcomes: (x, y)
• x = speed (km/hour)
• y = direction (°)

Sample space and sample elements
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Sample space and sample elements
▪ Example #2

• Sample space – Alternative 1
Ω1 = {(x, y): x ≥ 0, 0 ≤ y ≤ 360}  
continuous sample space

▪ Example #2
• Sample space – Alternative 2

Ω2 = {+, −}  discrete sample 
space
• + = wind speed > 60 km/hour
• − = wind speed < 60 km/hour

360

0
x (km/hour)

y (°)

Ω1
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Events
▪ An event is a subset of a sample space
▪ An event occurs if and only if outcomes of the experiment are 

members of the event
▪ Example, recalibration of Sta-1, Sta-2, Sta-3

• Event A: at least two stations need recalibration
A = {(y, y, y), (y, y, n), (y, n, y), (n, y, y)}

• Event B: none of those stations requires recalibration
B = {(n, n, n)}

• Event C: two stations need recalibration
C = {(y, y, n), (y, n, y), (n, y, y)}
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Venn diagram

S E2 E3
E1

E4 Ei En

A B

S E2 E3
E1

E4 Ei En

A BA∩B

0 ≤ prob 𝐸1 ≤ 1

𝑆 = ራ
𝑖
𝐸𝑖

prob 𝑆 =  prob 𝐸𝑖 = 1

• Notation

S = sample space
Ei = element in S
A,B = events in S
prob(Ei) = probability of element Ei
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▪ Event 𝐴

▪ Events 𝐴 and 𝐵

▪ Events 𝐴 and 𝐵 are independent

Probability of an event

0 ≤ prob 𝐴 = 

𝑖=𝑚

𝑛

prob 𝐸𝑖 ≤ 1

prob 𝐴 ∪ 𝐵 = prob 𝐴 + prob 𝐵 − prob 𝐴 ∩ 𝐵

prob 𝐴 ∪ 𝐵 = prob 𝐴 + prob 𝐵

𝐴 = ራ
𝑖=𝑚

𝑛

𝐸𝑖
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▪ Event 𝐴𝑐 = complement of event 𝐴
▪ 𝐴𝑐 represents all elements in the sample space 𝑆 are not in 𝐴

Probability of an event

S E2 E3
E1

E4 Ei En

A

prob 𝐴 ∩ 𝐴𝑐 = 0

prob 𝐴 ∩ 𝐴𝑐 = prob 𝐴 + prob 𝐴𝑐 = 1

prob 𝐴 =1 − prob 𝐴𝑐
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▪ The probability of an event (event 𝐵) depends on the occurrence of 
another event (event 𝐴)

Conditional probability

S E2 E3
E1

E4 Ei En

A BA∩B

prob 𝐵 𝐴 = prob 𝐵  with the condition that 
event 𝐴 has occurred

▪ the sample space S reduces to 𝐴
▪ the event is represented by  

prob 𝐵 𝐴 =
prob 𝐴⋂𝐵

prob 𝐴
,  prob 𝐴 ≠ 0

⟹ prob 𝐴⋂𝐵 = prob 𝐴 ∙ prob 𝐵 𝐴
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▪ If event 𝐵 is independent on the occurrence of event 𝐴

Conditional probability

prob 𝐵 𝐴 = prob 𝐵

prob 𝐴⋂𝐵 = prob 𝐴 ∙ prob 𝐵
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▪ Example
• Rainfall data at a station show the probability of rainy day as follow

• probability of a rainy day following a rainy day is 0.444
• probability of a dry day following a rainy day is 0.556
• probability of a dry day following a dry day is 0.724
• probability of a rainy day following a dry day is 0.276

• If it rains one day, what is the probability of having rain during the 
following two days?

Conditional Probability
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Conditional probability
day-1
rain

day-2
rain

day-3
rain

event A

event B

• Event A = rain in day-2 after rain in day-1
Event B = rain in day-3 after rain in day-1

• Looking for rain in 3 consecutive days:
• It is known that prob 𝐴 = 0.444 

 prob 𝐵 𝐴 = 0.444 (rainy day following a rainy day)
 ⟹ prob 𝐴⋂𝐵 = 0.444 × 0.444 = 0.197
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prob 𝐴⋂𝐵 = prob 𝐴  prob 𝐵 𝐴



▪ Another approach
• Probability of a rainy day following a rainy day is p = 0.444
• It rains one day
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Conditional probability

day-1
rain

day-2
rain

day-3
rain

p = 0.444

dry dry

p = 0.556

p = 0.444×0.444

p = 0.556×0.444



Total probability
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S B2 B3

B1

B5
Bi

Bn

A
B4

Bn–1

▪ 𝐵1, 𝐵2, … , 𝐵𝑛 are mutually exclusive events, 
each has non-zero probability of occurrence, 
prob 𝐵𝑖 ≠ 0, for all 𝑖

𝐵1⋃𝐵2⋃ ⋯ ⋃𝐵𝑛 = 𝑆

𝐵𝑖⋂𝐵𝑗 = 0, ∀𝑖, 𝑗 𝑖 ≠ 𝑗

prob 𝐵𝑖 > 0, ∀𝑖



Total probability
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S B2 B3

B1

B5
Bi

Bn

A
B4

Bn–1

▪ Probability of event 𝐴 can be written 
as follows

prob 𝐴 = prob 𝐴 ∩ 𝐵1 ∪ 𝐴 ∩ 𝐵2 ∪ ⋯ ∪ 𝐴 ∩ 𝐵𝑛

prob 𝐴 = prob 𝐴 ∩ 𝐵1 + prob 𝐴 ∩ 𝐵2 + ⋯ + prob 𝐴 ∩ 𝐵𝑛

prob 𝐴 = prob 𝐵1 ∩ 𝐴 + prob 𝐵2 ∩ 𝐴 + ⋯ + prob 𝐵𝑛 ∩ 𝐴

𝐴 = 𝐴 ∩ 𝐵1 ∪ 𝐴 ∩ 𝐵2 ∪ ⋯ ∪ 𝐴 ∩ 𝐵𝑛



▪ From the conditional probability

St
at

is
tic

s 
an

d 
Pr

ob
ab

ili
ty

27

ht
tp

s:
//

is
tia

rto
.s

ta
ff.

ug
m

.a
c.

id

Total probability

S B2 B3

B1

B5
Bi

Bn

A
B4

Bn–1

prob 𝐴 ∩ 𝐵1 = prob 𝐴 prob 𝐵1 𝐴

prob 𝐵1 ∩ 𝐴 = prob 𝐵1 prob 𝐴 𝐵1

prob 𝐴 ∩ 𝐵1 = prob 𝐵1 ∩ 𝐴 ⟹

prob 𝐴 prob 𝐵1 𝐴 = prob 𝐵1 prob 𝐴 𝐵1

prob 𝐴 = prob 𝐴 ∩ 𝐵1 + prob 𝐴 ∩ 𝐵2 + ⋯
+prob 𝐴 ∩ 𝐵𝑛

prob 𝐴 = prob 𝐵1  prob 𝐴 𝐵1 + ⋯
+prob 𝐵𝑛  prob 𝐴 𝐵𝑛

prob 𝐴 = 

𝑖=1

𝑛

prob 𝐵𝑖  prob 𝐴 𝐵𝑖



▪ Example
• Records in a residential area show that probability of inundation is 

0.80 for rainy days and 0.25 for non-rainy days
• It is known that the probability of a rainy day in that area is 0.36
• What is the probability of inundation in that residential area?
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▪ Solution
• Suppose

• Event 𝐴 = inundation
• Event 𝐵1 = rainy day
• Event 𝐵2 = dry day

• Inundation might occur in a rainy or dry day
• prob 𝐴 = prob 𝐵1  prob 𝐴 𝐵1 + prob 𝐵2  prob 𝐴 𝐵2
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Total probability

= 0.36 × 0.80 + 1 − 0.36 × 0.25

= 0.448



▪ From the conditional probability
• prob 𝐴⋂𝐵 = prob 𝐴  prob 𝐵 𝐴    (1)
• prob 𝐵⋂𝐴 = prob 𝐵  prob 𝐴 𝐵    (2)

• Since prob 𝐴⋂𝐵 = prob 𝐵⋂𝐴 ⟹

 prob 𝐴  prob 𝐵 𝐴 = prob 𝐵  prob 𝐴 𝐵   (3)

▪ For events 𝐴 and 𝐵𝑗, Eq. (3) becomes
• prob 𝐴  prob 𝐵𝑗 𝐴 = prob 𝐵𝑗  prob 𝐴 𝐵𝑗  (4)
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▪ From the total probability
• prob 𝐴 = σ𝑗=1

𝑛 prob 𝐵𝑗  prob 𝐴 𝐵𝑗   (5)

▪ Substituting (5) to (4)
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Bayes theorem

prob 𝐵𝑗 𝐴 =
prob 𝐵𝑗  prob 𝐴 𝐵𝑗

σ𝑖=1
𝑛 prob 𝐵𝑖  prob 𝐴 𝐵𝑖

(6)



▪ Use of Bayes theorem
• Finding probabilities of one event (Bj) provided that another event 

has occurred (A)
• Estimating probabilities of one event (Bj) by observing a second 

event (A)
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Bayes theorem
▪ Example

• Information from an early warning system are transmitted by four relays.
• Ri (i = 1, 2, 3, 4) is event where information are transmitted by relay i.
• Probabilities of event Ri are 0.1, 0.2, 0.3, and 0.4.
• It is known from previous experiences that probabilities of transmittal 

errors of each relay are 0.05, 0.10, 0.15, and 0.20.
• An error has just been noticed recently.
• What is the probability that the information were sent through relay R2?
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Bayes theorem
▪ Solution

• Given prob(R1) = 0.1 prob(E|R1) = 0.10
 prob(R2) = 0.2 prob(E|R2) = 0.15
 prob(R3) = 0.3 prob(E|R3) = 0.20
 prob(R4) = 0.4 prob(E|R4) = 0.25

• Probability that the transmission was done through relay R2, given 
that an error had occurred is
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prob 𝑅2 𝐸 =
prob 𝑅2 ⋅ prob 𝐸 𝑅2

σ𝑖=1
𝑛 prob 𝑅𝑖 ⋅ prob 𝐸 𝑅𝑖

prob 𝑅2 𝐸 =
0.2 × 0.15

0.1 × 0.10 + 0.2 × 0.15 + 0.3 × 0.20 + 0.4 × 0.25
=

0.03

0.20
= 0.15



Bayes theorem
i prob(Ri) prob(E|Ri) prob(Ri). prob(E|Ri) prob(Ri|E)

1 0.1 0.10 0.01 0.05

2 0.2 0.15 0.03 0.15

3 0.3 0.20 0.06 0.30

4 0.4 0.25 0.10 0.50

0.20 1.00

prob(E)
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Statistics and Probability
Probability
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