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Statistics and Probability

Statistics and Probability

Regression
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Curve fitting

" Aline or curve that represents a number of data points

Statistics and Probability

" There are two methods to find such line or curve
* Regression
* Interpolation
" Engineering applications
* Trend analysis
* Hypothesis testing

S
o
&
S
o0
35

[Py

“—
©
+—
<
(@]
=
o
@©
=
2
<
o3
(/2]
o
e
=
=

N




Regression vs interpolation

Regression Interpolation

Statistics and Probability

The data show significant errors or

, The data are accurate
noise

To find a single curve that To find a curve or curves that
represent general trend of the data | encompass(es) every data point

Regression line (curve) does not To estimate values between data
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Regression and interpolation

" Extrapolation
* Similarto interpolation but applied to outside range of data points

Statistics and Probability

* Notrecommended
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Curve fitting to measured data

" Trend analysis

* Use of data trend (measurements, experiments) to estimate values
* |fthe data are accurate, use interpolation technique

Statistics and Probability

* |fthe data show noise, use regression technique

" Hypothesis testing
* Comparison between theoretical values with computed ones
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Recall on statistical parameters

Statistics and Probability

. R _ 1

- " Arithmetic mean —> yzgzyi
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Probability distribution

Statistics and Probability

freq”

Normal Distribution
one of data distributions
that is frequently
encountered in engineering
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Regression

Simple Linear
Regression




Statistics and Probability
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Regression: least-square method

" To find a single curve or function (approximate) that
represents the general trend of the data
* The data show significant error
* The curve does not need to pass every data point

® Methods

* Linearregression (simple linear regression)
* Linearized expressions

* Polynomial regression

* Multiple linear regression

* Non-linearregression



Regression: least-square method

" How
Spreadsheet (Microsoft Excel)

Statistics and Probability

Computer program
* MatLab

Freeware

* QOctave
 Scilab
* Freemat
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Simple linear regression

" To find a straight line that represents the general trend of

data points: (Xg,¥o)s (X15Y1)s «oes (X,,¥)
® Yreg = Qo+ a1X

Statistics and Probability

* qagintercept
* a4 slope
" Microsoft Excel

 =INTERCEPT(y,x)
e =SLOPE(y,x)
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Simple Linear Regression

® Error or residual

* Discrepancies between actual value of y (y data) and approximate
value of y (y,..4) according to linear expression (ay + a;x)

Statistics and Probability

e=y_Yreg=y_(a0+a1x)

* Minimize the sum of squared residues

min[S,] = min lz e; ‘ min Z(y —ay — a.Xx) ‘
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Statistics and Probability
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Simple linear regression

" Howtofind ag and a;?

Differentiate the equation
of S,- twice; firstly with
respect to ay and lastly
with respect to a4

Set each of the two
equations to zero

Solve the equations for a
and a4

3s,
dag —2 Z()’i — Qg —

aS
aaz = —2 z(yi — Ay — A1X;)X;

0 _ as,
5(10 B aal

XX Y — L X LY
e nY x;*— (X x)?

Ap =Y — 44X
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Statistics and Probability
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Example #1

Yreg ViVreg)®  (ViYmean)’
0 1 0.5 0.5 1 0.910714 0.168686 8.576531
1 2 2.5 5 4 1.75 0.5625 0.862245
2 3 2.0 6 9 2.589286 0.347258 2.040816
3 4 4.0 16 16 3.428571 0.326531 0.326531
4 5 3.5 17.5 25 4.267857 0.589605 0.005102
5 6 6.0 36 36 5.107143 0.797194 6.612245
6 7 5.5 38.5 49 5.946429 0.199298 4.290816
2 28 24.0 119.5 140 )3 2.991071 22.71429




Example #1

onXxy;—Xx Ly, 7(119.5) — 28(24)
MYz —(Zx)? | 7(140) — (28)2

24

= 0.839286
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Example #1

O data ==regression

Statistics and Probability
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Statistics and Probability
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Error

" Error
* Standard error magnitude

Sy = Z(Yi —ay — a;x;)?

* Notice its similarity with standard deviation

Se= ) 0= 9




Error

" Diffrence between the two “errors” signifies an
improvement of the prediction or a reduction of error

Statistics and Probability

coefficient of determination

ﬁ
|
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_ nYxy; — Qx) X y;)
JnYx2— Cx)2/nYy2 — Cyi)?

correlation coefficient

. -1<r<+1
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Error

Statistics and Probability

S, = Z(yi —ay — ayx;)? = 2.991071

S, = Z(yi — )% = 22.71429

r? =

S¢ — S, 2271429 —2.991071
S, 22.71429

r = 0.931836

= 0.868318

°
o
b
S
oD
>
o
=
@
=
%
o
S
o
@
=
)
-~
o3
(2]}
o)
=
=
=

-1<r<+1

N
o




N © 0 < ™ N — O
(X)y =4

f(x;)

5.5
3.5
2.5
0.5

Yi

Example #2
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Regression

Polynomial
Regression
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Polynomial regression

" Some engineering data, although exhibiting a marked
pattern, is poorly represented by a straight line
* Method 1: coordinate transformation (linearized non-linear eq.)

Statistics and Probability

* Method 2: polynomial regression
* The mth-degree polynomial

Yy =ag+ a;x + ax*+ -+ aypx™

* The sum of the squares of the residuals

n n
- 2 2 m\2
Sr—zei —Z(}’i—ao—a1xi—azxi — = Ay X ™)
1 i=1
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Statistics and Probability
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Polynomial regression

The least-square method
extended to fit the data to an
mth-degree polynomial

These equations can be set
equal to zero and rearranged
to develop a set of normal
equations

z(yl—ao a; X — azx

aao
aa1 = —ZZx (yl — ax; — ayx? —
aaz = —Zz xf(yi — ap — agx; — apxf —

da,,

ro_ m 2
= —szi (yi—ao—alxi—azxi —

— ")
- amxim)

- amxim)

T amxlm)



Statistics and Probability
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Polynomial regression

n n n n
2 m _
a0n+alzxi+a22xi +---+am2xi —Zyi
i-1 i=1 i=1 i=1

n n n n n
aOin + alzxiz + azz:xi3 + et amzxim“ = inyi
. . . . |
1= =1

1—1 =1 1 i=1
n n n n n

a, z x;2 + aq z x;3 + a, z x;t+ o+ amz x; 12 = Z x;2y;
i=1 i=1 i=1 i=1 i=1

n

n n n n
a, z x;™+ ay z x;"t + a, Z x;2 + o+ ayy, z x; 2™ = z x;™y;

i=1 i=

Therearem + 1
linear equations
havingm + 1
unknowns, i.e.
g, A1, 0, ..., Ay

These linear
equations can be
simultaneously
solved by using
methods such as

* Gauss

elimination

®* Gauss-Jordan

* Jacobiiteration

* Matrix inversion



1 Example
g " Fitasecond-order polynomial to X; Yi
% the data in the table on the right 0 2.1
y =ay+ a;x + a,x? 1 7.7
?é 2 13.6
£ ®  Answer
:J?f 3 27.2
7 y = 2.47857 + 2.35929x + 1.86071x? 4 40.9
2 s 3.74657 5 61.1
2 " S, 2513.39
r = 0.9993

26




Regression

Regression of
Linearized
Expression




Statistics and Probability
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Linear Regression

" Linearized non-linear equations
* Logarithmic eq. = linear eq.
* Exponentialeq. =2 lineareq.
* n-th order polynomialeq. (n > 1) =2 linear eq.
¢ etc.



Statistics and Probability
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Linear Regression

— bix
y=ae’ g

v

lny 4

In a,

Iny=Ina; + b;1x
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Linear Regression
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y 4 log y4 logy =loga, + b, logx
:
2 b
v Y = ap;x"? jl>
2 b,
2 1
£ X / loglx
-0 loga,




Statistics and Probability
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XV

1 b 1 byl
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Regression

Multiple Linear
Regression




Multiple linear regression

" Suppose the dependent variable y is a linear function of
two independent variables x; and x,

Statistics and Probability

Y =AQp + ai1xq + a,X-

* The best values of the coefficients are determined by setting up the
sum of the squares of the residuals

S
o
&
S
o0
35

[Py

“—
©
+—
<
(@]
=
o
@©
‘=
2
<
o3
(/2]
o
e
=
=

n
_ 2
Sr = Z(J’i —apglayxq; — azle')
i=1

w
w




Multiple linear regression

" Differentiating this equation with respect to each of the
unknown coefficients
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Multiple linear regression

®  Equating the differentials to zero and expressing the resulted equation
as a set of simultaneous linear equations yield

n n n
apgn + allei + aszZi = Z)’i
i=1 i=1

i=1

Statistics and Probability

n

X1iX2i = z X1iYi

i=1
n
1=

z X2iYi
1

X1i + a xliz + a,

-
R
-

2%
=1 i=1 i=
n

1
n n
E E 2 _
Ay ) X; T A1 ) XqiXp; T QA z X2i“ =
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Statistics and Probability
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Example

Find the best linear equation
that fits to the data in the table
on the right

Answer

y=5+4x, — 3x,

0 5
2 1 10
2.5 2 9
3 0
4 6 3
2 27




Multiple linear regression

" Multiple linear regression can be useful in the derivation of power
equations of the general form

Statistics and Probability

— a a a
Y = ApXq 1x2 2 e Xm m

* Such equations are extremely useful when fitting experimental data

* |norderto use the multiple linear regression, the equation is transformed
by taking its logarithm to yield

logy =logay + a4 logx; +a,logx, + -+ a,, log x,,
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Regression

General Linear
Least Squares




General linear least squares

" The three types of regression that have been presented, i.e. simple linear,
polynomial, and multiple linear can be expressed in a general least-squares
model

Statistics and Probability

Y =QoZogt+a1zZ1 +ayZy + -+ aQnzZy,

* where zy, 74, ..., 2, are m + 1 different functions
* m+ 1listhe number of independent variables
* n+ 1isthe number of data points

" Aspecialcaseiswhenzy, =1
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General linear least squares

" The previous expression can be written in a matrix form

Y} = [Z]1A}

Statistics and Probability
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General linear least squares
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{r} = [Z[{4} —=> [Z]"[z]{4} = [Z]"{Y}

‘dgy A7 *+ +  +  am1 " {Y}containsthe observed values of
= Aoy Q1 *  * *  Qmo the dependent variables
§° z1=| ' ' = [Z] is a matrix of the observed
S ' ' ' values of the independent variables
:§ Aoy, Qin A {A} contains the unknown
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General Linear Least Squares

(Z]"[Z]{A} = [Z]"{Y}

" Solution strategy
* LU decomposition
* Cholesky’s method
* Matrix inverse approach

v

{43 = |[z1"[z]]

[Z]"{Y}
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Statistics and Probability

Regression
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