UJIAN TENGAH SEMESTER TEKNIK PENGOLAHAN DATA

Dr. Ir. Istiarto, M.Eng. | Rabu, 10 April 2013 | 100 menit | Closed Book

SOAL A

Suatu kawasan memiliki risiko tergenang banjir 5% per tahun. Dengan pendekatan distribusi binomial, hitunglah:

- 1) peluang tidak pernah tergenang dalam 10 tahun,
- 2) risiko tergenang 2 kali dalam 10 tahun,
- 3) risiko tergenang maksimum 2 kali dalam 10 tahun.
- Probabilitas suatu distribusi binomial:

$$f_X(x;n,p) = \binom{n}{x} p^x (1-p)^{n-x} = \frac{n!}{(n-x)! \, x!} \, p^x (1-p)^{n-x}$$

SOAL B

Di bawah ini adalah data *annual series* curah hujan maksimum harian (*R*, dalam milimeter) di suatu stasiun penakar hujan. Telah diketahui pula bahwa data di bawah ini berdistribusi normal.

132	150	150	132	168	132	150	114	186	150
195	105	168	132	168	168	168	150	150	132

- 1) Hitunglah curah hujan rerata dan simpangan baku curah hujan (bulatkan dalam milimeter terdekat, tidak perlu ada desimal).
- 2) Buatlah tabel frekuensi dengan lebar klas 20 mm dan batas bawah klas terendah 100 mm.
- 3) Gambarlah histogram data curah hujan tersebut.
- 4) Hitunglah probabilitas curah hujan maksimum harian antara 125 mm s.d. 175 mm, prob(125 mm < R < 175 mm).
- 5) Tetapkan rentang keyakinan nilai rerata curah hujan maksimum harian tersebut dengan tingkat keyakinan $(1-\alpha) = 0.90$.
- 6) Jika seseorang menetapkan rentang nilai rerata curah hujan adalah antara 140 mm s.d. 155 mm, berapakah tingkat keyakinan yang dimilikinya?
- Nilai Z dari suatu variabel random R dinyatakan dengan persamaan: $Z_R = (R \bar{R})/s_R$.
- Rentang keyakinan, $prob(\ell < \mu_R < u) = (1 \alpha)$,
- batas bawah rentang, $\ell = \bar{R} + t_{\alpha_0, n-1} (s_R / \sqrt{n})$,
- batas atas rentang, $u = \bar{R} + t_{1-\alpha_h,n-1}(s_R/\sqrt{n})$,
- ika lebar rentang simetri terhadap curah hujan rerata, maka $\alpha_a=\alpha_b=\alpha/2$.